%! TEX root = DA.tex % vim: tw=50 % 14/10/2024 12PM Let $(x_1, \ldots, x_n) \in \Zbb^n$. The height of it is \[ H(x_1, \ldots, x_n) = \max(|x_1|, \ldots, |x_n|) .\] \begin{fcthm}[Subspace theorem, Archimedean version, Schmidt] Assuming: - $n \in \Zbb_{\ge 2}$ - $L_1, \ldots, L_n$ linearly independent linear forms with algebraic coefficients in $n$-variables Then: for all $\eps > 0$ the solutions of \[ \prod_{j = 1}^{n} |L_J(x_1, \ldots, x_n)| < H(x_1, \ldots, x_n)^{-\eps} \tag{$*$} \label{subthm_concleq} ,\] for $(x_1, \ldots, x_n) \in \Zbb^n$ are contained in a finite collection of proper linear subspaces of $\Qbb^n$, which depend only on $L_1, \ldots, L_n, \eps$. \end{fcthm} \begin{center} \includegraphics[width=0.6\linewidth]{images/370604435f07457c.png} \end{center} The volume of the region is \[ H(x_1, \ldots, x_n) \le H \qquad \text{and} \qquad \prod_{j = 1}^{n} |L_j(x_1, \ldots, x_n)| < H^{-\eps} \] is $\sim (\log H)^{n - 1} H^{-\eps}$. Consider the paralellepipeds: \[ |L_j(x_1, \ldots, x_n)| < H^{\kappa_k} \] for some $\kappa_j \in \Rbb$ with $\sum \kappa_j = -\eps$. This implies Roth's theorem: Let $\alpha \in \ol{\Qbb} \cap \Rbb$ irrational. Consider the linear forms \begin{align*} L_1(X_1, X_2) &= X_1 - \alpha X_2 \\ L_2(X_1, X_2) &= X_2 \\ \end{align*} Let $p, q \in \Zbb$. Then \eqref{subthm_concleq} is equivalent to $|p - \alpha q||q| < \max(p, q)^{-\eps}$. If $\left| \frac{p}{q} - \alpha \right| < \frac{|\alpha|}{2}$, then this is equivalent to $\left| \frac{p}{q} - \alpha \right| < Cq^{-2-\eps}$. Roth's theorem is true apart from $p, q$ contained in a finite collection of subspaces. A subspace is of the form $p + \beta q = 0$ for some $\beta \in \Qbb$ or maybe $q = 0$. Obvious subspaces: \begin{itemize} \item $\ker(L_j)$ \item Example $n = 3$: $L_1 = X_1 - \sqrt2 X_2$, $L_2 = X_1 - \sqrt2 X_2 + X_3$, $L_2 = X_2$. Consider the subspace $V = \{(p, q, 0) : p, q \in \Qbb\}$. Now \eqref{subthm_concleq} becomes: \[ |p - \sqrt2 q|^2 |q| < \max(p, q)^{-\eps} ,\] or alternatively \[ \left| \frac{p}{q} - \sqrt2 \right|^2 < q^{-3} \max(p, q)^{-\eps/2} .\] This has plenty of solutions by Dirichlet if $\eps < 1$. \item A line, that is a $1$-dimensional subspace may contain only finitely many solution. \end{itemize} The places of $\Qbb$ is $M_{\Qbb}$ and it consists of all prime numbers and $\infty$. For each $v \in M_{\Qbb}$, we define an absolute value on $\Qbb$. $|\bullet|_\infty$ is the ordinary absolute value. If $v \in M_{\Qbb}$ is a prime number, this is the $v$-adic absolute value, that is, for $a \in \Zbb$, $|a|_v = v^{-b}$ where $b \in \Zbb$ is maximal such that $v^b \mid a$. For $\frac{a}{b} \in \Qbb$, we define $\left| \frac{a}{b} \right|_v = \frac{|a|_v}{|b|_v}$. If $x, y \in \Qbb$, then: \begin{itemize} \item $|x|_v|y|_v = |xy|_v$ \item $|x + y|_v \le |x|_v + |y|_v$ \end{itemize} When $v \neq \infty$, \[ |x + y| \le \max(|x|_v, |y|_v) .\] This is called the ultrametric inequality. \begin{fcthm}[Subspace theorem, $p$-adic version with Q coeffs] Assuming: - $n \in \Zbb_{\ge 2}$ - $S \subset M_{\Qbb}$ with $\infty \in S$ - for each $v \in S$, let $L_1^{(v)}, \ldots, L_n^{(v)}$ be linearly independent forms with rational coefficients in $n$ variables Then: the solutions of \[ \prod_{v \in S} \prod_{j = 1}^{n} |L_j^{(v)} (x_1, \ldots, x_n)|_v < H(x_17 \ldots, x_n)^{-\eps} ,\] with $(x_1, \ldots, x_n) \in \Zbb^n$ are contained in a finite collection of proper subspaces of $\Qbb^n$. \end{fcthm} $n = 2$, $S = \{2, 3, \infty\}$, $L_j^{(v)} = X_j$, $v \in S$, $j = 1, 2$. Consider $a \in \Zbb$. Let $a = 2^k 3^l b$ with $b$ not divisible by 2 or 3. \[ |a|_2 |a|_3 |a|_\infty = 2^{-k} 3^{-l} |a| = |b| .\] Consider $X_1 = 2^k$, $X_2 = 3^l$, then \[ \prod_{v \in S} \prod_{ j = 1}^{2} |L_j^{(v)}(2^k, 3^l)|_v = 1 .\] What happens if you replace $L_2^{(\infty)}$ with $X_1 - X_2$?