%! TEX root = DA.tex % vim: tw=50 % 22/11/2024 12PM \begin{proof} Let $j = 1$, and by taking the substitution $X - \alpha_1 Y \mapsto X$, we may assume $\alpha_1 = 0$. First, we show $X$ is bounded on $\Gamma_1$. To this end: \[ X = \frac{G(X, Y)}{a(X - \alpha_2 Y) \cdots (X - \alpha_d Y)} .\] Note \[ a(X - \alpha_2 Y) \cdots (X - \alpha_d Y) \ge cY^{d - 1} \] on $\Gamma$, with some $c = c(P) > 0$. We may write $P = 0$ as: \[ aXY^{d - 1} + bY^{d - 1} + \tilde{P}(X, Y) \] ($\tilde{P}$ of degree $\le d - 2$ in $Y$). $a$ is not the same as in the factorisation of $F$ and $a \neq 0$, but $b$ may be $0$. This gives: \[ X = \frac{-b}{a} + Y^{-1} \cdot \ub{Q(X, Y^{-1})}_{\text{bounded}} \tag{$**$} \label{lec19_eq1} .\] For some polynomial $Q$. Then $\lim X = \frac{-b}{a}$ on $\Gamma$. Proving the first claim, suppose we can write \[ f(X, Y) = R_1(X) Y^k + R_2(X) Y^{k - 1} + \cdots \tag{$**$} \label{lec19_eq2} .\] Here, negative exponents of $Y$ are allowed, but the sum must be finite. You can always do this with $k = D$ if $R_1 \left( -\frac{b}{a} \right) \neq 0$. Then $f(X, Y) \cdot Y^{-k} \to R \left( -\frac{b}{a} \right) \neq 0$ and $\ord_{p_1}(f) = -k$ and the claim holds. If $R_1 \left( -\frac{b}{a} \right) = 0$, then use \eqref{lec19_eq1} to write \eqref{lec19_eq2} with $k$ replaced by $k - 1$. Iterate this. \end{proof} \begin{lemma*} For each $j = 1, \ldots, d$, there is a basis $l_1, \ldots, l_n$ ($n = \dim V$) of $V$ such that \[ \ord_{p_j}(l_i) \le -D + i - 1 .\] \end{lemma*} \begin{proof} By induction, we show that there $l_1, \ldots, l_{i - 1}$ and $V_i \subset V$ such that \begin{align*} V &= \ol{Qbb} l_1 \oplus \cdots \oplus \ol{\Qbb} l_{i - 1} \oplus V_i \\ \ord_j(l_k) &\le -D + k - 1 &&\text{for $k = 1,\ldots, i - 1$} \\ \ord_{p_j}(f) &\le -D + i &&\text{for $f \in V_i$} \end{align*} $i = 1$ is trivial: $V = V_1$. So suppose $i > 1$ and the claim holds for $i - 1$. We define: $l_{i - 1}$ to be an element in $V_{i - 1}$ of minimal order at $p_j$. Let $V_i = \{f \in V_{i - 1} : \ord_{p_j}(f) > \ord_{p_j}(l_{i - 1})\}$. Just need to show: $V_{i - 1} = l_{i - 1} \ol{\Qbb} \oplus V_i$. To this end, let $g \in V_{i - 1}$. Write $m = \ord_{p_j}(l_{i - 1})$. Then \[ \lim_{\Gamma_j} g \cdot V_1^m \eqdef b < \infty .\] \[ f = g - \frac{b}{\lim_{\Gamma_j} l_{i - 1} \cdot Y^m} l_{i - 1} .\] Then \[ \lim_{\Gamma_j} f Y^m = 0 \] so by the previous lemma, $\ord_{p_j} f > m$. So $f \in V_i$. \end{proof} For this to be useful, we need $n$ to be large. (We need $n \ge 2D + 2$). \begin{lemma*} \[ \dim V \ge dD - d(d - 1) .\] \end{lemma*} \begin{remark*} Thinking about $\Gamma$ as a projective curve, $V$ is the space of rational functions with poles of order at most $D$ at each point at $\infty$. By Riemann-Roch: $\dim V = dD - g + 1$, provided $D$ is large enough. \end{remark*} \begin{proof} Let $R(X, Y) = \prod (X - \alpha_j Y)$ ($= \frac{F(X, Y)}{a}$). The point is that the polynomials \[ Q_{jl}(X, Y) = \frac{R(X, Y)}{X - \alpha_j Y} \cdot Y^l \in V \] are linearly independent in $V$. $j = 1, \ldots, d$, $l = 1, \ldots, D - d + 1$. Suppose $Q = \sum_{j, l} \beta_{jl} Q_{jl}$ for some $\beta_{jl} \in \ol{\Qbb}$ not all $0$. Want to show $Q \neq 0$. To that end, let $\beta_{j', l'} \neq 0$ such that $l'$ is maximal with this property. We can show that: \[ \lim_{\Gamma_j} Q(X, Y) \cdot Y^{-l' - d + 1} = \beta_{j', l'} \prod_{i = \{1, \ldots, d\} \setminus \{j'\}} {(\alpha_j' - \alpha_i)} .\] Uses the first lemma today. \end{proof}