%! TEX root = DA.tex % vim: tw=50 % 20/11/2024 12PM \begin{theorem*} Let $d \ge 3$. Let $F(X, Y) \in \Zbb[X, Y]$ be a homogeneous polynomial of degree $d$ without repeated factors. Let $G(X, Y) \in \Zbb[X, Y]$ be of degree $\le d - 1$. Assume $F - G$ is irreducible. Then \[ F(X, Y) = G(X, Y) \qquad X, Y \in \Zbb \] has at most finitely many solutions. \end{theorem*} Schinzel proved this only assuming that $F \neq aQ^n$ for some irreducible $Q$ of degree $\le 2$. He used Siegel's theorem on integral points. If an algebraic curve has infinitely many points, then it has genus $D$ and at most $2$ points at infinity. Our proof is based on an argument of Corvaja and Zannier for proving Siegel's theorem. \textbf{Subspace theorem:} Let $V$ be a vector space of dimension $n$ over $\ol{\Qbb}$. Let $e_1^{(0)}, \ldots, e_n^{(0)}$ and $e_1, \ldots, e_n$ be two bases of $V$. Then for all $\eps > 0$, there exists a finite number of elements $f_1, \ldots, f_m \in V$ such that all $\varphi \in V^*$ that solves: \[ \prod_{i = 1}^{n} |\varphi(e_i)| \le H(\varphi(e_1^{(0)}), \ldots, \varphi(e_n^{(0)}))^{-\eps} \tag{$*$} \label{lec18_eq} \] with $\varphi(e_i^{(0)}) \in \Zbb$ for all $i = 1, \ldots, n$, $\varphi$ satisfies $\varphi(f_j) = 0$ for some $j \in \{1, \ldots, n\}$. $\exists \alpha_{i, j} \in \ol{\Qbb}$ such that \[ e_i = \sum_{j} \alpha_{ij} e_j^{(0)} \] and $L_i = \alpha_{i1} X_1 + \cdots + \alpha_{in} X_n$. $\varphi$ satisfies \eqref{lec18_eq} if and only if \[ (x_1, \ldots, x_n) = (\varphi(e_1^{(0)}), \ldots, \varphi(e_n^{(0)})) \in \Zbb^n \] satisfies \[ \prod_{i = 1}^{\infty} |L_i(x_1, \ldots, x_n)| < H(x_1, \ldots, x_n)^{-\eps} .\] Let $F, G$ be as in the theorem, and write $P = F - G$. We assume that $Y \nmid F$. Then there exists $\alpha_1, \ldots, \alpha_d \in \ol{\Qbb}$ distinct such that \[ F(X, Y) = (X - \alpha_1 Y) \cdots (X - \alpha_d Y) .\] Write $\Gamma$ for the set of $(x, y) \in \Cbb^2$ with $P(x, y) = 0$. Then for $(x, y) \in \Gamma$ we have \[ F(x, y) \le C(|x| + |y|)^{d - 1} .\] By a similar argument to the lemma for Thue's equation, for all $\eps > 0$ there exists $R = R(P, \eps)$ such that $(x, y) \in \Gamma$ with $|x| + |y| > R$, then $\left| \frac{x}{y} - \alpha_j \right| < \eps$ for some $j$. We pick a small $\eps > 0$, in particular $|\alpha_i - \alpha_j| > 2\eps$ for $i \neq j$. We define \begin{align*} \Gamma_0 &= \{(x, y) \in \Gamma : |x| + |y| < R\} \\ \Gamma_j &= \left\{(x, y) \in \Gamma : |x| + |y| \ge R, \left| \frac{x}{y} - \alpha_j \right| < \eps \right\} \end{align*} for $j = 1, \ldots, d$. \begin{center} \includegraphics[width=0.6\linewidth]{images/23bc79f7834d467d.png} \end{center} $\Gamma_0$ is bounded so only has finitely many integer points. We want to show this also for $\Gamma_1, \ldots, \Gamma_j$. Write $I = P\Qbb[X, Y]$ for the ideal generated by $P$. Take some $D \in \Zbb_{\ge 1}$ and large enough. Write $\ol{\Qbb}[X, Y]^{(D)}$ for polynomials of degree $\le D$. We will apply the subspace theorem in the vector space \[ V = \ol{\Qbb}[X, Y]^{(D)} / (I \cap \ol{\Qbb}[I, Y]^{(D)}) .\] Elements $f \in V$ can be evaluated on $\Gamma$. In particular, for $(x, y) \in \Gamma$, the map $f \mapsto f(x, y)$ is an element of $V^*$. Reference basis: the monomials $X^k Y^m$ for $k + m \le D$ span $V$. Pick a linearly independent family for $e_1^{(0)}, \ldots, e_n^{(0)}$, where $n = \dim V$. If $(x, y) \in \Gamma \cap \Zbb^2$, then $e_i^{(0)}(x, y) \in \Zbb$. Also, \[ H(e_1^{(0)}(x, y), \ldots, e_n^{(0)}(x, y)) < C |y|^D .\] We need to find some $l_j$'s that decay on a fixed $\Gamma_i$. For $j = 1, \ldots, d$ we introduce a symbol $p_j$ and call these the ``points of $\Gamma$ at infinity''. We define for $f \in V$: \[ \ord_{p_j}(f) = \sup \{m \in \Zbb : f(x, y) \cdot y^m \text{ is bounded on $\Gamma_j$}\} .\] Note $\ord_{p_j}(f) \ge -D$. \begin{lemma*} Let $f \in V$ and let $j \in \{1, \ldots, d\}$. If $\ord_{p_j}(f) < \infty$, then the limit \[ \lim_{(x, y) \in \Gamma, |y| \to \infty} f(x, y) y^{\ord_{p_j}(f)} \] exists and $\neq 0$. In addition, we have \[ \lim_{(x, y) \in \Gamma_j, |y| \to \infty} (X - \alpha Y) Y^{-1} = \alpha_j - \alpha \] for all $\alpha \in \ol{\Qbb}$. \end{lemma*} Can be proved that $\ord_{p_j}(f) = \infty$ if and only if $f = 0$. $\frac{Z}{Y}$ is a local uniformiser at $p_j = (\alpha_i, 1, 0)$.