%! TEX root = DA.tex % vim: tw=50 % 18/11/2024 12PM \begin{theorem*}[Nesterenko] Let $T_0, T_1, N, M \in \Zbb_{>0}$. Let $\Sigma_1, \Sigma_2 \subset \Cbb^2$ such that $|\Sigma_1| = N$, $|\Sigma_2| = M$, and the exponentials of the second coordinates of $\Sigma_1$ and the first coordinates of $\Sigma_2$ are distinct. Let $P \in \Cbb[X, Y]$ of degree $\le T_0$ in $X$, and $\le T_1$ in $Y$. Suppose that $P(X, \exp(y))$ vanishes on $\Sigma_1 + \Sigma_2$. Then \[ N \le T_1 \qquad \text{or} \qquad M \le T_0 (T_1 + 1) .\] \end{theorem*} \begin{proof} If $P(X, Y) = \tilde{P}(X, Y) \cdot Y$, then $P(X, \exp(y))$ vanishes at exactly the same places as $\tilde{P}(X, \exp(y))$. So we may assume $Y \nmid P(X, Y)$. Suppose that $N > T_1$, and write $\Sigma_1 = \{(\xi_1, \eta_1), \ldots, (\xi_N, \eta_N)\}$. Then $P(\xi_j + X, \exp(\eta_j + y))$ vanishes on $\Sigma_2$ for all $j = 1, \ldots, N$. We write $P(X, Y) = R_1(X) Y^{k_1} + \cdots + R_K Y^{k_K}$ with $0 = k_1 < k_2 < \cdots < k_K \le T_1$. Then \[ P(\xi_j + X, \exp(\eta_j + y)) = R_1(\xi_j + X) \cdot \exp(\eta_j)^{k_1} \cdot \exp(y)^{k_1} + \cdots .\] Write \[ Q_{i, j}(X) = R_i(\xi_j + X) \exp(\eta_j)^{k_i} .\] Then \[ P(\xi_j + X, \exp(\eta_j + y)) = \sum_{i = 1}^{n} Q_{i,j}(X) (\exp(y))^{k_i} .\] I look for polynomials $A_1, \ldots, A_k \in \Cbb[X]$ such that \[ \sum_{j = 1}^{K} A_j(X) P(\xi_j + X, \exp(\eta_j + y)) = B(X) \in \Cbb[X] \tag{$*$} \label{lec17_eq} \] such that $\deg B \le T_0(T_1 + 1)$, and then since $B$ vanishes at the first coordinates of $\Sigma_2$, $M \le T_0(T_1 + 1)$ will follow. \end{proof} \begin{lemma*} Let $Q_{ij} \in \Cbb[X]$ for $i, j = 1, \ldots, K$ for some $K \in \Zbb_{> 0}$. Then there exists $A_1, \ldots, A_k \in \Cbb[X]$ such that \[ \sum_i A_i Q_{ij} = \begin{cases} \det[Q_{ij}] & \text{if $j = 0$} \\ 0 & \text{otherwise} \end{cases} \] \end{lemma*} \begin{proof} Let $[\tilde{Q}_{ij}]$ be the adjugate of $[Q_{ij}]$. Then \[ [\tilde{Q}_{ij}] \cdot [Q_{jk}] = \det[Q_{jk}] \cdot \id .\] Let $A_1, \ldots, A_k$ be the first row of $[\tilde{Q}_{ij}]$. \end{proof} \[ \begin{pmatrix} Q_{11}(X) & \cdots & Q_{1k}(X) \\ \vdots & \ddots & \vdots \\ Q_{k1}(X) & \cdots & Q_{kk}(X) \end{pmatrix} \begin{pmatrix} \exp(y)^{e_1} \\ \vdots \\ \exp(y)^{e_k} \end{pmatrix} = \begin{pmatrix} P(\xi_1 + X, \exp(\eta_i + y)) \\ \vdots \\ P(\xi_k + X, \exp(\eta_k + y)) \end{pmatrix} \] Premultiply this by the row vector $(A_1(X), \ldots, A_k(X))$. We get \eqref{lec17_eq} with $B = \det[Q_{ij}$. $\deg B \le T_0 K \le T_0(T_1 + 1)$. We need to make sure that $B \neq 0$ The leading term of $Q_{ij}$ is $a_i \cdot \exp(\eta_j)^{k_i} \cdot X^{\deg R_i}$, where $a_i$ is the leading coefficient of $R_i$. To show $B \neq 0$, we will consider the leading term of $B$: \[ \det[a_i \exp(\eta_j)^{k_i} X^{\deg R_i}]_{ij} = \det[\exp(\eta_j)^{k_i}]_{ij} X^{\sum \deg R_i} \prod a_i .\] \begin{lemma*} Let $K \in \Zbb_{\ge 1}$, wne let $0 = k_1 < \cdots < k_K \in \Zbb$. Let $A \subset \Cbb$ such that $|\{\exp(\eta) : \eta \in A\}| > k_K$. Then there exists a choice of $\eta_1, \ldots, \eta_K \in A$ such that \[ \det [\exp(\eta_i)^{k_j}] \neq 0 .\] \end{lemma*} \begin{proof} By induction on $K$. $K = 1$ is true. Suppose $K > 1$, and the claim holds for $K - 1$. Consider the determinant: \[ \begin{vmatrix} \exp(\eta_1)^{k_1} & \cdots & \exp(\eta_K)^{k_K} \\ \vdots & \ddots & \vdots \\ \exp(\eta_{K - 1})^{k_1} & \cdots & \exp(\eta_{K - 1}^{k_K} \\ z^{k_1} & \cdots & z^{k_K} \end{vmatrix} = D(z) \] which has the property that the upper left $(K - 1) \times (K - 1)$ minor is $\neq 0$. Now $D$ is a polynomial which is $\neq 0$ of degree $k_K$, so it has at most $k_K$ many $0$s. Choose $\eta_K$ such that $\exp(\eta_K)$ is not one of them. \end{proof}