%! TEX root = DA.tex % vim: tw=50 % 15/11/2024 12PM \begin{proposition*}[1] Let $S = (T_0 + 1) T_1$ be non-negative integers. Let $w_1, \ldots, w_{T_1}$ and $\xi_1, \ldots, \xi_S$ be two sets of distinct real numbers. Then \[ \det[\xi_S^\tau \exp(w_t \xi_S)]_{\substack{\tau, t \\ s}} \neq 0 ,\] with: $\tau = 0, \ldots, T_0$, $t = 1, \ldots, T_1$, $s = 0, \ldots, S$. \end{proposition*} alternant / interpolation determinant \begin{proposition*}[2] Let $T \in \Zbb_{\ge 1}$, let $w_1, \ldots, w_T$ be distinct real numbers. Let $P_1, \ldots, P_T \in \Rbb[X]$ be non-zero. Then the function \[ F(x) = P_1(x) e^{w_1 x} + \cdots + P_T(x) e^{w_T x} \] has at most $\deg P_1 + \cdots + \deg P_T + T - 1$ real zeroes counting multiplicities. \end{proposition*} \begin{proof}[Proposition (2) $\implies$ Proposition (1)] Suppose to the contrary that $\det = 0$. Then there exists $a_{\tau, t} \in \Rbb$ not all $0$ such that \[ \sum a_{\tau, t} x^\tau \exp(w_t x) \] vanishes for all $x = \xi_1, \ldots, \xi_S$. This is a function of the type in Proposition (2). Each polynomil is of degree $\le T_0$, and there are $T_1$ many of them, so there can be no more than $T_0 \cdot T_1 + T_1 - 1 < S$ zeroes. \end{proof} \begin{lemma} Let $f$ be a $C^\infty$ function on $\Rbb$ with $N$ real zeroes. Then $f'$ has at least $N - 1$ zeroes. \end{lemma} Corollary of Rolle's Theorem. \begin{proof}[Proof of Proposition (2)] By induction on $N \defeq \deg P_1 + \cdots + \deg P_T + T - 1$. If $N = 0$, then $T = 1$ and $\deg P_1 = 0$. So $F(x) = a \cdot \exp(w_1 x)$ for some $a \neq 0$. This indeed has no zeroes. Suppose $N > 0$ and the claim holds for $N - 1$. We assume as we may that $w_1 = 0$ (if not, then replace $w_j$ by $w_j - w_1$, which has the effect of replacing $F$ by $F \cdot e^{-w_1 \cdot x}$). Then by the lemma, $F$ has at most one more zero than \[ F' = \ub{P_1(x)'}_{\deg P_1 - 1} + \ub{(P_2'(x) + P_2(x) w_w) e^{w_2 x}}_{\deg P_2} + \cdots \] By the induction hypothesis, $F'$ has at most $N - 1$ zeroes, so $F$ has at most $N$ zeroes. \end{proof} Now we return to proving \nameref{gs}. Let $z_1, z_2 \in \Rbb_{\neq = 0}$ such that $\alpha_j = e^{\lambda_j} \in \ol{\Qbb}$ for $j = 1, 2$. We aim for a contradiction. We have integers $L, T_0, T_1, S$ such that \[ L = (T_0 + 1)(2T_1 + 1) = (2S + 1)^2 .\] Let \[ \Delta = \det[(s_1 + \beta s_2)^\tau \exp(\lambda_1 t(s_1 + \beta s_2))]_{\substack{\tau, t \\ s_1, s_2}} .\] Last time: \[ \log |\Delta| \le -cL^2 \log E + CLT_0 \log ES + CLT_1 ES \] where $E \in \Rbb_{> 1}$ arbitrary. Apply Proposition (1) with $\xi_S = (s_1 + \beta s_2)$ with some enumeration of $s_1, s_2$ and $w_t = \lambda_1 t$. Then $\Delta \neq 0$. Recall: \[ \Delta = \det[(s_1 + \beta s_2)^\tau \alpha_1^{t s_1} \alpha_2^{t s_2}]_{\substack{\tau, t \\ s_1, s_2}} .\] Then \[ \Delta = P(\beta, \alpha_1, \alpha_2) \] for some $P \in \Zbb[X, Y, Z]$. So: \[ H(\Delta) \le \mathcal{L}(P) \cdot H(\beta)^{T_0 \cdot L} \cdot H(\alpha_1)^{T_1 S \cdot L} H(\alpha_2)^{T_1 SL} \] using \[ \mathcal{L}(P_1, P_2) \le \mathcal{L}(P_1) \mathcal{L}(P_2) \] and \[ \mathcal{L} \left( \sum P_j \right) \le \sum \mathcal{L}(P_j) \] we get \[ \mathcal{L}(P) \le L! \cdot (2S)^{T_0 L} .\] Liouville bound: \[ \log |\Delta| > -C(\log L! + T_0 L \log S) .\] Take: $E = 10$. Then we have a contradiction if \[ -cL^2 + CL T_0 \log S + CL T_1 S < -C(L \cdot \log L + T_0 L \log S + T_1 LS) .\] I want: \[ L^2 > C(T_0 L \log S + LT_1 S) .\] Take: $S \approx L^{\half}$, $T_0 \approx L^{1 - \eps}$, $T_1 \approx L^\eps$.