%! TEX root = DA.tex % vim: tw=50 % 13/11/2024 12PM Let $\lambda_1, \lambda_2 \in \Rbb_{\neq 0}$, and $\alpha_1 = e^{\lambda_1}$, $\alpha_2 = e^{\lambda_2} \in \ol{\Qbb}$. Let $\beta = \frac{\lambda_2}{\lambda_1} \in \ol{\Qbb} \setminus \Qbb$. So we assumed that Gelfond-Schneider is false. We aim for a contradiction. Let $T_0, T_1, S \in \Zbb_{> 0}$ with \[ L \defeq (T_0 + 1)(2T_1 + 1) = (2S + 1)^2 .\] Consider the ``monomials'' \[ X^\tau \exp(t\lambda_1 X) \] for $\tau = 0, \ldots, T_0$, $t = -T_1, \ldots, T_1$ and the points $s_1 + \beta s_2$ for $s_1, s_2 = -s, \ldots, s$. \begin{notation*} $[-]_{\substack{\tau, t \\ s_1, s_2}}$ means a matrix with rows indexed by $\tau, t$ and columns indexed by $s_1, s_2$. \end{notation*} Let \begin{align*} \Delta &= \det [(s_1 + \beta s_2)^\tau \cdot \exp(t \lambda_1(s_1 + \beta s_2))]_{\substack{\tau, t \\ s_1, s_2}} \\ &= \det [(s_1 + \beta s_2)^\tau \alpha_1^{ts_1} \alpha_2^{ts_2}]_{\substack{\tau, t \\ s_1, s_2}} \end{align*} Steps: \begin{enumerate}[(1)] \item Give an analytic upper bound on $\Delta$ \item Give an arithmetic lower bound on $\Delta$ \item ``zero estimate'' $\implies \Delta \neq 0$. \end{enumerate} Steps (1) and (2) will be done in such a way that together they will give $\Delta = 0$. Then this will contradict (3). We will alternate between viewing $(s_1 + \beta s_2)^\tau \cdot \exp(t \lambda_1(s_1 + \beta s_2))$ as a function of a single variable (function of $s_1 + \beta s_2$) and thinking of it as a function of two variables (function of $s_1$ and $s_2$). \subsubsection*{Upper bound} \begin{proposition*} For $n \in \Zbb_{> 0}$, there exists $c = c(n) > 0$ such that the following holds: Let $L \in \Zbb_{> 0}$, $E \in \Rbb_{> 1}$. Let $f_1, \ldots, f_L : \Cbb^n \to \Cbb$ be \emph{analytic} functions (here, analytic means convergent power series on $\Cbb^n$). Let $\xi_1, \ldots, \xi_L \in \Cbb^n$. Let $r = \max_{\substack{s = 1, \ldots, L \\ j = 1, \ldots, n}} |\xi_{s, j}|$. Then \[ \det[f_t(\xi_s)]_{\substack{t = 1, \ldots, L \\ s = 1, \ldots, L}} \le E^{-cL^{1 + \frac{1}{n}}} \cdot L! \cdot \prod_{t = 1}^{L} |f|_{Er} .\] \end{proposition*} \begin{notation*} $|f|_R = \max_{|x_1|, \ldots, |x_n| \le R} |f(x_1, \ldots, x_n)|$. \end{notation*} \begin{corollary*} With $\Delta, T_0, T_1, S, L$ as above, there exists $c, C > 0$ depending only on $\beta, z$, such that for all $E \in \Rbb_{\ge e}$: \[ |\Delta| \le \exp(-cL^2 \log E + CL \cdot T_0 \log (ES) + CLT_1ES) .\] \end{corollary*} \begin{proof} We take $n = 1$ and some $E \ge e$. We have $|s_1 + \beta s_2| < C_0 \cdot S$ with $C_0 = C_0(\beta)$. \[ |z^\tau \exp(t\lambda_1 z)| < \exp(C_1 T_0 \cdot \log ES + C_1 T_1 ES) \] for $|z| < E \cdot C_0 \cdot S$, with $C_1 = C_1(\beta, \lambda_1)$. \end{proof} One possible choice of the parameters: $E = e$. $S \sim L^{\half}$, $T_0 \sim L^{1 - \eps}$, $T_1 \sim L^\eps$. In this case: \[ |\Delta| = \exp(-cL^2) .\] (for large $L$). \begin{lemma*}[Schwart's Lemma] \label{schwart} Let $f$ be a holomorphic function on $D_R$ the disc of radius $R$ with a zero of order $k$ at $0$. Then: for all $z \in D_R$: \[ |f(z)| \le \frac{|z|^K \cdot |f|_R}{R^K} .\] \end{lemma*} \begin{proof} The maximum modulus principle for $\frac{f(z)}{z^K}$. \end{proof} \begin{proof}[[Proof of Proposition]] We apply \nameref{schwart} for \[ f(z) = \det [f_t(z \cdot \xi_s)]_{\substack{t \\ s}} \] and $R = E$. Note: $|F|_E \le L! \cdot \prod_{t = 1}^{T} |f_t|_{Er}$. So the proposition follows if we show that $F$ vanishes to order $cL^{1 + \frac{1}{n}}$ at $0$. We prove this. Enough to do it when each $f_t$ is of the form $z_1^{a_1} \cdots z_n^{a_n}$ for some $a_1, \ldots, a_n \in \Zbb$ depending on $t$. This is because all $f_t$s are infinite linear combinations of such $f_t$s, and hence the determinant can be written as an infinite combination of special determinants. Furthermore we may assume that the $(a_1, \ldots, a_n)$ are distinct for different $t$s. Observe: $\det[f_t(z \cdot \xi_s)]_{\substack{t \\ s}} = z^{\sum \deg f_t} \cdot \det [f_t(\xi_s)]_{\substack{t \\ s}}$ if each $f_t$ is of the special form. The number of monomials with degree $\le d$ is at most $d^n$. We take $d = \left\lfloor \left( \frac{L}{2} \right)^{\frac{1}{n}} \right\rfloor$. Then at least half of the $f_t$s have degree $\ge d$. So $\sum \deg f_t \ge \left( \frac{L}{2} \right) \cdot d \ge c \cdot L^{1 + \frac{1}{n}}$. \end{proof}