%! TEX root = DA.tex % vim: tw=50 % 11/11/2024 12PM So we find $P \in \Zbb[X_1, X_2]$ such that $I_P(\alpha, \alpha; \log q_1, \log q_2) \ge I$ and $H)(P) \le (4H(\alpha))^{\delta^{-1} (n_1 + n_2)}$. We need: \[ H(P), \exp(n_1 + n_2) \le q_j^{n_j / C} \sim q_1^{n_1 / C} \] for $j = 1, 2$ and $\log q_2 > C \log q_1$. This will be fine if $(4H(\alpha))^{\delta^{-1}} < q_1^C$. This is fine if $\eps_0$ is sufficiently small with respect to $\alpha$ and $\delta$. Then $I_P \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right) \le \eps_0(n_1 \log q_1 + n_2 \log q_2)$. Then there exists $\tilde{P}$ a partial derivative of $P$ such that \[ H(\tilde{P}) \le (8H(\alpha))^{\delta^{-1}(n_1 + n_2)} ,\] \[ I_{\tilde{D}}(\alpha, \alpha) \ge I - \eps_0(n_1 \log q_1 + n_2 \log q_2) \ge \frac{n_1 \log q_1 + n_1 \log q_2}{\sqrt{2d} + \frac{\eps}{5}} ,\] if $\eps_0$ is sufficiently small. $\tilde{P} \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right) \neq 0$. Then \[ \left| \tilde{P} \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right) \right| > \frac{1}{q_1^{n_1} q_2^{n_2}} .\] Taylor's formula: \[ \tilde{P} \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right) = \sum_{i_1, i_2} \tilde{P}_{i_1, i_2}(\alpha, \alpha) \left( \alpha - \frac{p}{q} \right)^{i_1} \left( \alpha - \frac{p_2}{q_2} \right)^{i_2} \] If $i_1, i_2$ are such that $P_{i_1, i_2}(\alpha, \alpha) \neq 0$, then \[ i_1 \log q_1 + i_2 \log q_2 > \frac{n_1 \log q_1 + n_2 \log q_2}{\sqrt{2d} + \frac{\eps}{5}} \] hence \begin{align*} \left| \alpha - \frac{p_1}{q_1} \right|^{i_1} \left| \alpha - \frac{p_2}{q_2} \right|^{i_2} &< \exp \left( -(\sqrt{2d} + \eps) \cdot \frac{n_1 \log q_1 + n_2 \log q_2}{\sqrt{2d} + \frac{\eps}{5}} \right) \\ &< \left( q_1^{n_1} q_2^{n_2} \right)^{-\frac{\sqrt{2d} + \eps}{\sqrt{2d} + \frac{\eps}{5}}} \end{align*} The exponent is smaller than $-1$! Now estimate the coefficients: \begin{align*} \tilde{P}_{i_1, i_2}(\alpha, \alpha) &\le (n_1 + 1)(n_2 + 1)(8H(\alpha))^{\delta^{-1}(n_1 + n_2)} \cdot \max(1, |\alpha|)^{n_1 + n_2} \\ &< C_1(\alpha, \eps)^{n_1 + n_2} \end{align*} and \begin{align*} \tilde{P} \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right) &\le (n_1 + 1)(n_2 + 1) C_1(\alpha, \eps)^{n_1 + n_2} \cdot (q_1^{n_1} q_2^{n_2})^{-\frac{\sqrt{2d} + \eps}{\sqrt{2d} + \frac{\eps}{5}}} \\ &\le (2C_1(\alpha, \eps))^{n_1 + n_2} \cdot (q_1^{n_1} q_2^{n_2})^{-\frac{\sqrt{2d} + \eps}{\sqrt{2d} + \frac{\eps}{5}}} \\ &< (q_1^{n_1} q_2^{n_2})^{-1} \end{align*} Contradiction. \end{proof} \begin{theorem*}[Gelfond-Schneider] \label{gs} Let $\lambda_1, \lambda_2$ be logarithms of non-zero algebraic numbers. Then $\lambda_1, \lambda_2$ are linearly independent over $\ol{\Qbb}$ if and only if they are linearly independent over $\Qbb$. \end{theorem*} We will prove this by assuming $\frac{\lambda_1}{\lambda_2} \in \ol{\Qbb} \setminus \Qbb$, and then showing that a particular determinant is both equal to zero and not equal to zero, hence getting a contradiction. Before doing this, we will discuss how the previous proof could have been instead been phrased using determinants. We considered some functions $\varphi_1, \ldots, \varphi_L$ which were some enumeration of $X_1^{j_1} X_2^{j_2}$. Then we used \nameref{siegel} to find $a_1, \ldots, a_L$ such that $D = a_1 \varphi_1 + \cdots + a_L \varphi_L$ vanishes at $u_1 = (\alpha, \alpha)$ to some order. (Note that $P$ also vanishes at all Galois-conjugates of $(\alpha, \alpha)$: $u_2, \ldots, u_d$). Then we find an argument to show that $P$ also vanishes at $u_{d + 1} = \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right)$ to some order. This means that for $i = 1, \ldots, L$ there exists $k(i) \in \{1, \ldots, d + 1\}$ and some partial differentiation operator $\partial_i$ such that $\partial_i P(u_{k(i)}) = 0$. We also showed that $P$ with so much vanishing cannot exist. Let: \[ M = \begin{pmatrix} \partial_1 \varphi_1(u_{k(1)}) & \cdots & \partial_L \varphi_1(u_{k(l)}) \\ \vdots & \ddots & \vdots \\ \partial_1 \varphi_L(u_{k(1)}) & \cdots & \partial_L \varphi_L(u_{k(L)}) \end{pmatrix} \] Then $P$ having all that vanishing is equivalent to \[ (a_1, \ldots, a_L) M = (0, \ldots, 0) .\] Now the existence of $P$ is equivalent to $\det M = 0$.