%! TEX root = DA.tex % vim: tw=50 % 08/11/2024 12PM \[ I_{\mathcal{P}} \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right) \ge \frac{\eps^2}{20} h(n_1 \log q_1 + n_2 \log q_2) .\] If $F$ vanishes to order $m$ at $\frac{p_1}{q_1}$, then $q_1^m$ divides the leading coefficient of $F$. In particular, $q_1^m \le H(F)$. Then \[ I_F \left( \frac{p_1}{q_1}; \log q_1 \right) \le \log H(\mathcal{F}) \le \frac{10 hn_1 \log q_1}{C} \] \[ I_G \left( \frac{p_2}{q_2}; \log q_2 \right) \le \log H(\mathcal{G}) \le \frac{10 hn_2 \log q_2}{C} \] If $C$ is sufficiently large in terms of $\eps$, then \[ I_{\mathcal{P}} \left( \frac{p_1}{q_1}, \frac{p_2}{q_2} \right) < I_{\mathcal{F}} \left( \frac{p_1}{q_1} \right) + I_{\mathcal{G}} \left( \frac{p_2}{q_2} \right) .\] A contradiction. \end{proof} Now we prove the lemma from earlier: \begin{lemma*} Let $F^{(1)}, F^{(2)}, \ldots, F^{(h)}$ be $\Qbb$-linearly independent polynomials in $\Zbb[X]$. Then \[ \begin{vmatrix} F^{(1)} & F^{(2)} & \cdots F^{(h)} \\ F_1^{(1)} & F_1^{(2)} & \cdots & F_1^{(h)} \\ \vdots & \vdots & \ddots & \vdots \\ F_{h - 1}^{(1)} & F_{h - 1}^{(2)} & \cdots & F_{h - 1}^{(h)} \end{vmatrix} \neq 0 .\] (Wronskian) \end{lemma*} \begin{proof} The statement does not change if we replace $F^{(j)}$ by $a F^{(i)} + b F^{(j)}$ for some $a, b \in \Qbb$ and $i \in \{1, \ldots, h\}$ provided $b \neq 0$. Then we may assume: $F^{(i)} = X^{mi} + \text{lower order terms}$ and the $m_i$ are distinct. We will prove that: \[ \begin{vmatrix} X^{m_1} & \cdots & X^{m_h} \\ {m_1 \choose 1} X^{m_1 - 1} & \cdots & {m_h \choose 1} X^{mh - 1} \\ \vdots & \ddots & \vdots \\ {m \choose h - 1} X^{m_1 - h + 1} & \cdots & {mh \choose h - 1} X^{m_h - h + 1} \end{vmatrix} \neq 0 .\] Then this is the leading term of th Wronskian, so this will prove the claim. The determinant is equal to: \[ \begin{vmatrix} {m_1 \choose 0} & \cdots & {m_h \choose 0} \\ \vdots & \ddots & \vdots \\ {m_1 \choose h - 1} & \cdots & {m_h \choose h - 1} \end{vmatrix} \cdot X^M \] Supose to the contrary that a non-trivial linear combination of the rows is $(0, 0, \ldots, 0)$. Now the $i$-th row is a polynomial of degree $i - 1$evaluated at $m_1, \ldots, m_h$. Then the linear combination of the rows is a non-zero polynomial of degree $\le h - 1$ evaluated at $m_1, \ldots, m_h$. \end{proof} \begin{theorem*} Let $\alpha$ be an irrational, real algebraic number of degree $d \ge 2$. Then for all $\eps > 0$, there exists $C = C(\alpha, \eps)$ such that \[ \left| \alpha - \frac{p}{q} \right| > C q^{-\sqrt{2d} - \eps} ,\] for all $\frac{p}{q} \in \Qbb$. \end{theorem*} \begin{proof} Suppose to the contrary that there are infinitely many $\frac{p}{q}$ with \[ \left| \alpha - \frac{p}{q} \right| < q^{-\sqrt{2d} - \eps} .\] Then fix $\eps_0 > 0$ sufficiently small in terms of $\alpha, \eps$ and let $C$ be the constant when the proposition is applied with $\eps_0$ in place of $\eps$. Now let $\frac{p_1}{q_1}, \frac{p_2}{q_2}$ be such that \[ \left| \alpha - \frac{p_1}{q_1} \right|, \left| \alpha - \frac{p_2}{q_2} \right| < q^{-\sqrt{2d} - \eps} \] and \[ \log q_1 > C \cdot \eps_0^{-1} \qquad \log q_2 > C \log q_1 .\] We use \nameref{siegel} to construct $P(X_1, X_2)$ that vanishes at $(\alpha, \alpha)$ to high order. We choose $n_1, n_2 \in \Zbb$ such that \[ n_1 \log q_1 \le n_2 \log q_2 \le n_1 \log q_1 + \log q_1 .\] We want a polynomial $P$ such that \[ I_P(\alpha, \alpha) \ge \frac{n_1 \log q_1 + n_2 \log q_2}{\sqrt{2d} + \frac{\eps}{10}} .\] For this we need to estimate \begin{align*} |\{(i_1, i_2) \in \Zbb_{\ge 0}^2 : i_1 \log q_1 + i_2 \log q_2 \le I\}| &\le \frac{(I + \log q_1 + \log q_2)^2}{2 \log q_1 \log q_2} \\ &\le \frac{(n_1 + 1)(n_2 + 1)}{(1 + \delta) d} \end{align*} \begin{center} \includegraphics[width=0.6\linewidth]{images/2c79cd0366a043ca.png} \end{center} This is because \[ I \sim \frac{2n_1 \log q_1}{\sqrt{2d}} \sim \frac{2n_2 \log q_2}{\sqrt{2d}} \] so \[ \frac{I^2}{2 \log q_1 \log q_2} \sim \frac{2n_1 \cdot 2n_2}{2 \cdot 2d} = \frac{n_1 n_2}{d} .\]