%! TEX root = DA.tex % vim: tw=50 % 04/11/2024 12PM In the $K = \Qbb$ case, a key step is that for $L \in \Zbb[X_1, \ldots, X_N]$ and $H(L) \le \mathcal{H}$, the points $L(y_1, \ldots, y_N)$ are integers confined in an interval of length $N \mathcal{H} Y$ (where $y_1 ,\ldots, y_N = 0, \ldots, N$). In the general case, consider the map: \begin{align*} \Phi : K &\to \Rbb^n \cdot \Cbb^s \cong \Rbb^D \\ \alpha &\mapsto (v(\alpha))_{v \in M_{K, \infty}} \end{align*} The $v$-component of $\Phi(L(y_1, \ldots, y_N))$ is confined in an interval (or box) of size $NY \cdot |L|_v$. Let $\alpha = L(y_1, \ldots, y_N) - (z_1, \ldots, z_N) \neq 0$. By the product formula, \[ \prod_{v \in M_{K, \infty}} |\alpha|_v^{d_v} = \prod_{_{v \in M_{K, f}}} |\alpha|_v^{-d_v} \ge \prod_{v \in M_{K, f}} |L|_v^{d_v} .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/7e34f8927d584022.png} \end{center} Make sure $\prod_v l_v \le$ RHS of above. \textbf{Non-vanishing:} \begin{proposition*} For every $\eps > 0$, there exists $C = C(\eps)$ such that the following holds. Let $n_1, n_2 \in \Zbb_{> 0}$, and let $\frac{p_1}{q_1}, \frac{p_2}{q_2} \in \Qbb$. Suppose that \[ \exp(n_1 + n_2) < q_j^{n_j / C} \] for $j = 1, 2$, and that $\log q_2 > C \log q_1$. Let $P \neq 0 \in \Zbb[X_1, X_2]$ of degree in $n_j$ in $X_j$ for $j = 1, 2$ such that \[ H(P) < q_j^{n_j / C} \] for $j = 1, 2$. Then \[ I_P \left( \frac{p_1}{q_1}, \frac{p_2}{q_2}, \log q_1, \log q_2 \right) \le \eps(n_1 \log q_1 + n_2 \log q_2) .\] \end{proposition*} Note: from now on, whenever we say $\frac{p}{q} \in \Qbb$, we also mean $\gcd(p, q) = 1$. When we apply this we will have $n_1 \log q_1 \sim n_2 \log q_2$. Without the asymmetry assumption ($\log q_2 > C \log q_1$), we have the counterexample: $P = (X_1 - X_2)^n$, with $\frac{p_1}{q_1} = \frac{p_2}{q_2}$. Alternatively: $P = (R(X_1) - X_2 Q(X_1))^n$ (for $R, Q$ some small degree polynomials) for any $\frac{p_1}{q_1}, \frac{p_2}{q_2}$ such that \[ \frac{p_2}{q_2} = \frac{R \left( \frac{p_1}{q_1} \right)}{Q \left( \frac{p_2}{q_2} \right)} \] \begin{lemma*} Let $F, F^{(1)}, F^{(2)} \in \Zbb[X_1, X_2]$, and let $i_1, i_2 \in \Zbb_{\ge 0}$. Let $\alpha_1, \alpha_2 \in \Rbb$ and $w_1, w_2 \in \Rbb_{> 0}$. Then the following holds: \begin{align*} I_{F_{i_1, i_2}}(\alpha_1, \alpha_2) &\ge I_F(\alpha_1, \alpha_2) - i_1 w_1 - i_2 w_2 \\ I_{F^{(1)} + F^{(2)}}(\alpha_1, \alpha_2) &\ge \min_{j = 1, 2} I_{F^{(j)}}(\alpha_1, \alpha_2) \\ I_{F^{(1)} F^{(2)}} &= I_{F^{(1)}}(\alpha_1, \alpha_2) + I_{F^{(2)}}(\alpha_1, \alpha_2) \end{align*} \end{lemma*} Baby case: $P(X_1, X_2) = F(X_1) G(X_2)$ for some $F, G$ polynomials. In this case if $I_P \ge \eps(n_1 \log q_1 + n_2 \log q_2)$ then either $I_F \ge \eps n_1 \log q_1$ or $I_G \ge \eps n_2 \log q_2$. If $F$ vanishes at $\frac{p_1}{q_1}$ to order $m$ for some $m$, then \[ (q_1 X_1 - p_1)^m \mid F .\] The leading coefficient of $F$is divisible by $q_1^m$. In particular, $H(F) > q_1^m$. Then $H(F) > q_1^{\eps n_1}$ or $H(G) > q_2^{\eps n_2}$. Hence $H(P) > \min(q_1^{\eps n_1}, q_2^{\eps n_2})$, which contradicts the assumptions. In general, we can always write \[ P(X_1, X_2) = F^{(1)}(X_1) G^{(1)}(X_2) + \cdots + F^{(h)}(X_1) G^{(h)}(X_2) \] with $h \le n_2$. Consider $h = 2$. \begin{align*} P(X_1, X_2) &= F^{(1)}(X_1) \cdot G^{(1)}(X_2) + F^{(2)}(X_1) G^{(2)}(X_2) \\ \frac{\partial}{\partial X_2} P &= F^{(1)} \cdot \frac{\partial}{\partial x_2} G^{(1)} + F^{(2)} \cdot \frac{\partial}{\partial X_2} G_2 \end{align*}