%! TEX root = DA.tex % vim: tw=50 % 01/11/2024 12PM Thue: $P(X, Y) = R_1(X) + Y R_2(X)$. Let $L$ be a linear form in $K[X_1, \ldots, X_N]$ where $K$ is a number field. For $v \in M_K$: $|L|_v = \max(|a_j|_v)$ where $L = a_1 X_1 + \cdots + a_N X_N$. Then define \[ H(L) = \left(\prod_{v \in M_K} |L|_v^{d_v}\right)^{\frac{1}{[K : \Qbb]}} .\] By the product formula, this is invariant under multiplication by an element $\alpha \in K^\times$: \[ |\alpha L|_v = |\alpha|_v |L|_v ,\] so \[ H(\alpha L) = \prod_{v \in M_K} |\alpha L|_v^{d_v} = H(L) \prod_{v \in M_K} |\alpha|_v^{d_v} = H(L) .\] \begin{lemma*}[Siegel's lemma] \label{siegel} Let $K$ be a number field of degree $D$. Let $M, N \in \Zbb_{> 0}$ such that $N > MD$ and let $\mathcal{H} \in \Rbb_{\ge 1}$. Let $L_1, \ldots, L_M \in K[X_1, \ldots, X_N]$ be linear forms such that $H(L_j) \le \mathcal{H}$. Then there exist $x_1, \ldots, x_N \in \Zbb$ (not all $0$) such that $L_h(x_1, \ldots, x_N) = 0$ for $j = 1, \ldots, M$ and \[ |x_i| \le (N \mathcal{H})^{\frac{MD}{N - MD}} .\] \end{lemma*} In particular, if $N \ge MD$, then the bound is $N \mathcal{H}$. There is a refinement of this lemma which is due to Bombieri and Vaaler. \begin{corollary*} Let $\alpha$ be an algebraic number of degree $D$. Let $w_1, w_2, \delta \in \Rbb_{> 0}$, and let $I \in \Rbb_{> 0}$. Let $n_1, n_2 \in \Zbb_{> 0}$. Suppose that \[ |\{(i_1, i_2) \in \Zbb_{\ge 0}^2 : i_1 w_1 + i_2 w_2 < I\}| \le \frac{(n_1 + 1)(n_2 + 1)}{(1 + \delta) D} .\] Then there exists $P \neq 0 \in \Zbb[X_1, X_2]$ of degree $n_j$ in $X_j$ such that $I_P(\alpha, \alpha, w_1, w_2) \ge I$ and \[ H(P) \le (4H(\alpha))^{(n_1 + n_2)\delta^{-1}} \] where $H(P)$ is the maximal absolute value of hte coefficients. \end{corollary*} \begin{proof} For $(i_1, i_2)$ consider: \[ L_{i_1, i_2} = \sum_{j_1 = 0}^{n_1} \sum_{j_2 = 0}^{n_2} {j_1 \choose i_1} {j_2 \choose i_2} a_{j_1, j_2} \cdot \alpha^{j_1 - i_1 + j_2 - i_2} \] where $a_{j_1, j_2}$ are variables of $L_{i_1, i_2}$. Then \[ L_{i_1, i_2}((a_{j_1, j_2})_{j_1, j_2}) = 0 \iff P_{i_1, i_2}(\alpha, \alpha) = 0 \] where \[ P = \sum_{j_1 = 0}^{n_1} \sum_{j_2 = 0}^{n_2} a_{j_1, j_2} X_1^{j_1} X_2^{j_2} .\] Need to find $(a_{j_1, j_2})_{j_1, j_2}$ such that $L_{i_1, i_2}((a_{j_1, j_2})) = 0$ for all $i_1, i_2$ with $i_1 w_1 + i_2 w_2 \le I$. Apply \nameref{siegel}: \[ N = (n_1 + 1)(n_2 + 1), \qquad M \le \frac{N}{(1 + \delta) D} .\] Then \[ \frac{MD}{N - MD} \le \frac{MD}{(1 + \delta) MD - MD} = \delta^{-1} .\] We need to estimate $H(L_{i_1, i_2})$. For finite places $v$, \[ |L_{i_1, i_2}|_v \le \max(1, |\alpha|_v)^{n_1 + n_2} .\] For infinite places: \[ |L_{i_1, i_2}|_v \le 2^{n_1} \cdot 2^{n_2} \max(1, |\alpha|_v)^{n_1 + n_2} \] Then \[ H(L_{i_1, i_2}) \le 2^{n_1 + n_2} \cdot H(\alpha)^{n_1 + n_2} \eqdef \mathcal{H} .\] Then \nameref{siegel} gives the bound \[ [2^{n_1 + n_2} H(\alpha)^{n_1 + n_2} \ub{(n_1 + 1)(n_2 + 1)}_{\le 2^{n_1 + n_2}}]^{\delta^{-1}} . \qedhere \] \end{proof} \begin{proof}[Proof of \nameref{siegel} for $K = \Qbb$] We can assume that the coefficients of each $L_j$ are integers, and that they are relatively prime. Then each coefficient is bounded by $\mathcal{H}$. Take $Y = \left\lfloor (N \mathcal{H})^{\frac{MD}{N - MD}} \right\rfloor$. Consider $(y_1, \ldots, y_N) \in \{0, 1, \ldots, Y\}^N$. Evaluating $L_j$ at all such $(y_1, \ldots, y_N)$ we have \[ \max L_j(y_1, \ldots, y_N) - \min L_j(y_1, \ldots, y_N) \le Y \cdot \mathcal{H} N .\] The number of possible values of $L_j(y_1, \ldots, y_N)$ is $\le Y \cdot H \cdot N + 1$. \textbf{Claim:} $(Y \mathcal{H} \cdot N + 1)^M < (Y + 1)^N$. Indeed: \begin{align*} Y &= \left\lfloor (N\cdot \mathcal{H})^{\frac{M}{N - M}} \right\rfloor \\ Y + 1 > (N \cdot \mathcal{H})^{\frac{M}{N - M}} \\ (Y + 1)^N > (N \cdot \mathcal{H})^M \cdot (Y + 1)^M \end{align*} The claim follows by \[ N \mathcal{H} Y + 1 < N \mathcal{H}(Y + 1) .\] Note that the above line uses the fact that $\mathcal{H} \ge 1$! By the box principle, there exist $(y_1, \ldots, y_N) \neq (z_1, \ldots, z_N)$, with entries bounded by $Y$, such that \[ L_j(y_1, \ldots, y_N) = L_j(z_1, \ldots, z_N) \qquad \forall j = 1, \ldots, M . \qedhere \] \end{proof}