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Fact: If n 6= m ∈ Z, then |n−m| ≥ 1.

Although this fact sounds very obvious, in this course it will be one of our most used tools.
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1 Diophantine Approximation

Theorem 1.1 (Dirichlet). Assuming that:

• α is an irrational real number

Then there exist infinitely many p
q ∈ Q such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
.

Proof. Consider the numbers 0, α, 2α, . . . , Nα for some fixed N ∈ Z>0. Consider them in R/Z ≡ [0, 1].
Note [

0,
1

N

)
t
[
1

N
,
2

N

)
t · · · t

[
N − 1

N
, 1

)
.

By the box principle (pigeonhole principle), there exists N ≥ n2 > n1 ≥ 0 such that n2α and n1α
belong to the same interval. Then:

|n2α− n1α− p| ≤ 1

N

for some p ∈ Z. Take q = n2 − n1. Then∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

Nq
≤ 1

q2
.

Take N → ∞, then you get an infinite sequence of rationals. If α is not raitonal, then this sequence
cannot stabilise, so we get infinitely many p

q as desired.

Can we do better?

In particular for α ∈ Q.

Theorem (Liouville). Assuming:

• α is algebraic of degree d

Then there exists c > 0 such that for all p
q ∈ Q with α 6= p

q , we have∣∣∣∣α− p

q

∣∣∣∣ ≥ c

qd
.

Proof. Let P ∈ Z[x] be the minimal polynomial of α, so P (α) = 0. Now note that P
(

p
q

)
6= 0 (by
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irreducibility when d ≥ 2, and for d = 1 using the hypothesis that α 6= p
q ). Then∣∣∣∣P (p

q

)∣∣∣∣ ≥ 1

qd
.

Note that P
(

p
q

)
is rational with denominator qd. On the other hand,∣∣∣∣P (p

q

)∣∣∣∣ ≤ ( max
x∈[α−1,α+1]

|P ′(x)|
)
·
∣∣∣∣α− p

q

∣∣∣∣ .
provided

∣∣∣α− p
q

∣∣∣ ≤ 1, which we may assume. Hence∣∣∣∣α− p

q

∣∣∣∣ > c

qd
.

Improvements of the exponent d in Liouville:

• Thue: d
2 + 1 + ε

• Siegel: little better than 2
√
d+ ε

• Dyson:
√
2d+ ε

Theorem 1.2 (Roth). Assuming that:

• α is an irrational real algebraic number

Then there exists c = c(α, ε) > 0 such that for all p
q ∈ Q we have∣∣∣∣α− p

q

∣∣∣∣ ≥ c

q2+ε
.

Theorem 1.3 (Thue). Assuming that:

• P (X,Y ) ∈ Z[X,Y ] homogeneous of degree d ≥ 3

• without repeated factors

• m ∈ Z

Then the equation
P (X,Y ) = m

has only finitely many solutions in Z2 with gcd(X,Y ) = 1.

Liouville’s theorem ↔ |P (p, q)| ≥ 1.
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Lemma 1.4. Assuming that:

• P ∈ R[X,Y ] be homogeneous of degree d

• without repeated factors

Then for all p, q ∈ Z, there exists α root of P (X, 1) such that

cq−dP (p, q) ≤
∣∣∣∣α− p

q

∣∣∣∣ ≤ Cq−dP (p, q).

Here c, C depend on P , and a fixed compact set that contains p
q .

Proof. Let
P (X, 1) = a(X − α1) · · · (X − αd),

with α1, . . . , αd distinct (since we assumed no repeated factors, and characteristic 0 fields are always
separable). Without loss of generality assume that α1 is the closest to p

q .

Then c0 <
∣∣∣pq − αj

∣∣∣ < C0 for some constants depending on P and the compact set for j 6= 1. So we

get lower and upper bounds on P
(

p
q , 1
)
= P (p, q) · 1

qd
.

Proof of Thue. Suppose P (p, q) = m. The lemma tells us that there exists α a root of P such that∣∣∣∣pq − α

∣∣∣∣ < C · q−d|P (p, q)︸ ︷︷ ︸
m

| = C ·m · q−d.

If the degree of α ≥ 2, then Roth or already Thue implies that q must be bounded, hence only finitely
many solutions.

For α ∈ Q, we use Liouville.

Lecture 2
Let (x1, . . . , xn) ∈ Zn. The height of it is

H(x1, . . . , xn) = max(|x1|, . . . , |xn|).

Theorem 1.5 (Subspace theorem, Archimedean version, Schmidt). Assuming that:

• n ∈ Z≥2

• L1, . . . , Ln linearly independent linear forms with algebraic coefficients in n-variables
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Then for all ε > 0 the solutions of
n∏

j=1

|LJ(x1, . . . , xn)| < H(x1, . . . , xn)
−ε, (∗)

for (x1, . . . , xn) ∈ Zn are contained in a finite collection of proper linear subspaces of Qn, which
depend only on L1, . . . , Ln, ε.

The volume of the region is

H(x1, . . . , xn) ≤ H and
n∏

j=1

|Lj(x1, . . . , xn)| < H−ε

is ∼ (logH)n−1H−ε. Consider the paralellepipeds:

|Lj(x1, . . . , xn)| < Hκk

for some κj ∈ R with
∑

κj = −ε.

This implies Roth’s theorem:

Let α ∈ Q ∩ R irrational. Consider the linear forms

L1(X1, X2) = X1 − αX2

L2(X1, X2) = X2

Let p, q ∈ Z. Then (∗) is equivalent to |p − αq||q| < max(p, q)−ε. If
∣∣∣pq − α

∣∣∣ < |α|
2 , then this is

equivalent to
∣∣∣pq − α

∣∣∣ < Cq−2−ε. Roth’s theorem is true apart from p, q contained in a finite collection
of subspaces. A subspace is of the form p+ βq = 0 for some β ∈ Q or maybe q = 0.
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Obvious subspaces:

• ker(Lj)

• Example n = 3: L1 = X1 −
√
2X2, L2 = X1 −

√
2X2 + X3, L2 = X2. Consider the subspace

V = {(p, q, 0) : p, q ∈ Q}. Now (∗) becomes:

|p−
√
2q|2|q| < max(p, q)−ε,

or alternatively ∣∣∣∣pq −√2
∣∣∣∣2 < q−3 max(p, q)−ε/2.

This has plenty of solutions by Dirichlet if ε < 1.

• A line, that is a 1-dimensional subspace may contain only finitely many solution.

The places of Q is MQ and it consists of all prime numbers and ∞. For each v ∈ MQ, we define an
absolute value on Q. | • |∞ is the ordinary absolute value. If v ∈ MQ is a prime number, this is the
v-adic absolute value, that is, for a ∈ Z, |a|v = v−b where b ∈ Z is maximal such that vb | a. For
a
b ∈ Q, we define

∣∣a
b

∣∣
v
= |a|v

|b|v . If x, y ∈ Q, then:

• |x|v|y|v = |xy|v

• |x+ y|v ≤ |x|v + |y|v

When v 6=∞,
|x+ y| ≤ max(|x|v, |y|v).

This is called the ultrametric inequality.

Theorem 1.6 (Subspace theorem, p-adic version with Q coeffs). Assuming that:

• n ∈ Z≥2

• S ⊂MQ with ∞ ∈ S

• for each v ∈ S, let L
(v)
1 , . . . , L

(v)
n be linearly independent forms with rational coefficients

in n variables

Then the solutions of ∏
v∈S

n∏
j=1

|L(v)
j (x1, . . . , xn)|v < H(x17 . . . , xn)

−ε,

with (x1, . . . , xn) ∈ Zn are contained in a finite collection of proper subspaces of Qn.
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n = 2, S = {2, 3,∞}, L(v)
j = Xj , v ∈ S, j = 1, 2. Consider a ∈ Z. Let a = 2k3lb with b not divisible

by 2 or 3.
|a|2|a|3|a|∞ = 2−k3−l|a| = |b|.

Consider X1 = 2k, X2 = 3l, then ∏
v∈S

2∏
j=1

|L(v)
j (2k, 3l)|v = 1.

What happens if you replace L
(∞)
2 with X1 −X2?Lecture 3

Proposition 1.7. Assuming that:

• ε > 0

Then there exists c = c(ε) > 0 such that for p, q, k,m ∈ Z>0, we have

|p2k − q3m| > c
max(2k, 3m)1−ε

max(p, q)

or p2k = q3m.

Proof. Take n = 2, S = {2, 3,∞}. Let L
(v)
j = Xj for all j, v, except: L

(∞)
2 = X2 − X1. Then the

solutions of ∏
v∈S

2∏
j=1

|L(v)
j (x1, x2)|v < H(x1, x2)

−ε/2

with x1, x2 ∈ Z are contained in the lines: X1 = 0, X2 = 0, X1 = X2 plus finitely many points.

Plug in X1 = p2k, X2 = q3m. Then

|L(∞)
1 (x1, x2)|∞ = p2k |L(∞)

2 (x1, x2)|∞ ≤
max(2k, 3m)1−ε

max(p, q)

provided p, k, q,m does not satisfy the claim with c = 1. Also,

|L(2)
1 (x1, x2)|2 ≤ 2−k |L(2)

2 (x1, x2)|2 ≤ 1

|L(3)
1 (x1, x2)|3 ≤ 1 |L(3)

2 (x1, x2)|3 ≤ 3−m

so
(∗) ≤ p

3m
· max(2k, 3m)1−ε

max(p, q)
≤ max(2k, 3m)1−ε

3m
.

Assume 3m ≥ 2k by symmetry. Then

(∗) ≤ max(2k, 3m)−/eps.

We can assumme that p, q ≤ 3m, for otherwise the claim is trivial. Then H(p2k, q3m) ≤ 32m. Then

(∗) < H(p2k, q3m)−ε/2.
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Then either p2k = q3m or p, q, k,m is one of finitely many exceptions.

Make c small enough to rule out the exceptions.

For a, b ∈ Z>0, let N(a, b) denote the number of non-zero digits in the base b expansion of a.

Theorem 1.8 (Senge, Strauss). We have N(a, 2) +N(a, 3)→∞ as a→∞.

Despite the fact that this statement looks quite modest, the proof is not so simple.

Proof. Take a ∈ Z: we assume that N(a, 2) + N(a, 3) < N for some fixed N . Consider its base 2
expansion.

First we will explore the consequences of having a large string of 0s in the base 2 expansion.

Then a = p · 2k1 + e1. We know:

|p| < 2log2(a)−k1+1, |e1| < 2k2 .

Similarly: a = q · 3m1 + e2 with |q| < 3log3(a)−m1+1 and |e2| < 3m2 .

We will make sure that 2k1

3m1
, 2k2

km2
∈
[
1
3 , 3
]
.

|p2k1 − q3m1 | = |e1 − e2| < 3 · 2k2 .

Want to use the proposition. So we need:

|p2k − q3m| ·max(p, q) < cmax(2k, 3m)1−ε.

So we want
C · 2k2 · 2log2(a)−k1 < c · 2k1(1−ε).

We want
log2(a)− k1 < k1 − kj − ε log2(a).
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Since at most N blocks have a non-zero number, one of the blocks only has zeroes, which can be used
with the above to show that a cannot be too large.

The constants in all results so far (except Liouville) are ineffective!

Are there any improvements of ∣∣∣∣21/3 − p

q

∣∣∣∣ < 100

q3

(suppose 100 is the best you can get with Liouville) for q < 1010
1010

1010
1010

. No!

To demonstrate what it means that the above results are ineffective:

Suppose that we want to find all the solutions of x3− 2y3 = 11. Thue says that we have finitely many.
But because it is ineffective, we have no idea how to bound the largest of these is, so would struggle
to find all solutions, even with an arbitrarily powerful computer (or an army of postdocs).Lecture 4

1.1 Transcendence

Liouville proved α =
∑∞

n=0
1

10n! is transcendental.

What about e, π, 2
√
2?

Hermite: e is transcendental.

Lindemann: If α 6= 0, then at least one of α or eα is transcendental.

Theorem 1.9 (Lindemann-Weierstrass). Assuming that:

• α1, . . . , αn ∈ C distinct

Then eα1 , . . . , eαn are linearly independent over Q (algebraic closure of Q).
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Hilbert’s 7th problem: Let α 6= 0, 1, algebraic, β irrational algebraic. Then αβ is transcendental.

Note (for this problem): αβ = exp(β · logα) where logα is any complex number with elogα = α.
So in the above problem we can think of “αβ is transcendental” as meaning “any choice for αβ is
transcendental”.

Convention: If α ∈ R>0, then logα ∈ R.

Theorem. Let α1, α2 be non-zero algebraic numbers. Then logα1, logα2 are linearly indepen-
dent over Q if and only if they are linearly independent over Q.

Proof of Hilbert’s 7th ⇐⇒ above Theorem is true.

⇒ Suppose logα1, logα2 are dependent over Q. Then ∃β ∈ Q such that β logα1 = logα2. Then
αβ
1 = α2 either β ∈ Q or α1 = 1.

⇐ Suppose there exists α1, α2 non-zero algebraic such that αβ
1 = α2 for some β ∈ Q. Then

β logα1 = logα2 for some choice of the logarithms. If the logarithms are 0, then we deduce
α1 = 1, a contradiction. Otherwise, we deduce that β ∈ Q (by the above theorem), which is also a
contradiction.

Theorem (Baber). Let logα1, . . . , logαn be Q-linearly independent logarithms of algebraic
numbers.
Then 1, logα1, . . . , logαn are linearly independent over Q.

Conjecture 1.10 (Schanuel). Let α1, . . . , αn ∈ C be linearly independent over Q. Then the
transcendence degree of Q(α1, . . . , αn, e

α1 , . . . , eαn) is at least n.

Let α1, . . . , αn ∈ Q>0, and b1, . . . , bn ∈ Z. Let Aj be the max of the numerator and the denominator
of aj .

Let B = max(|b1|, . . . , |bn|). Then

b1 log a1 + · · · bn log an close to 0 ⇐⇒ ab11 · · · abnn close to 1.

|ab11 · · · abnn − 1| ≥ A−b
1 · · ·A−B

n = exp(−(logA1 + logAn)B).

|b1 log a1 + · · ·+ bn log an| ≥
1

2
exp(−(logA1 + · · ·+ logAn)B).

Notation. Let α ∈ Q, denote its minimal polynomial in Z[X] by fα.
If f ∈ C[X], then H(f) (the height of f) is the maximal absolute value of its coefficients.
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Theorem. Let α1, . . . , αn ∈ Q6=0, β0, . . . , βn ∈ Q. Fix some choices of logαj . Let Aj =
max(H(fαj ) exp(| logαj |), 10).
Let Λ = β0 + β1 logα1 + · · · + βn logαn. Then there exists an effective constant C depending
on n and the degree of Q(α1, . . . , αn, β0, β1, . . . , βn) such that either Λ = 0 or

|Λ| > exp(−C(logA1) · · · (logAn)(logB)).

Conjecturially: this should be

|Λ| > exp(−Cmax(logA1, . . . , logAn, logB)).

Lecture 5

Theorem. Let α1, . . . , αn ∈ Q 6=0. Let logαj be a choice of their logarithms. Let b1, . . . , bn ∈ Z.
Let

Aj = max(H(f(α1)), . . . , H(f(αn)), exp(|logα1|), . . . , exp(| logαn|), 10)

B∗ = max

(
|b1|

logAn
, . . . ,

|bn−1|
logAn

, |bn|, 10)
)

Λ = b1 logα1 + · · ·+ bn logαn ← homogeneous

Then there is an effective constant C that depends only on n and the degree of Q(α1, . . . , αn)
such that

|Λ| > exp(−C(logA1), . . . , (logAn)(logB
∗)) or Λ = 0.

Observe
exp(Re logαj) = |αj | ≤ H(f(αj)).

Recall
B = max(|b1|, . . . , |bn|, logA1, . . . , logAn, 10).

Typical scenario: α1, . . . , αn−1 fixed numbers, bn = 1, bj ∼ logAn.

In the setting of Diophantine approximations, it is possible to show∣∣∣∣α− p

q

∣∣∣∣ > c(α) · 1

qd−ε(α)
,

with c(α) and ε(α) being effective constants.

Proposition. There is an effective absolute constant C such that for all p, q, k,m:

|p2k − q3m| > max(2k, 3m)

max(p, q, 10)−C log(max(k,m)/ logmax(p,q,10)+10)
,

or p2k = q3m.
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Proof. Suppose 3m > 2k.
Λ = k log 2−m log 3 + 1 · log(p/q).

A2 = A1 = 10, A3 = max(p, q, 10)

B∗ =
max(k,m)

logA3
+ 1.

Then:
|Λ| > exp(−C logA3 logB

∗) = A−C logB∗

3 .

| exp(Λ)− 1| > 1
10 |Λ|

exp(Λ)− 1 =

∣∣∣∣2k ·−m ·p
q
− 1

∣∣∣∣ ≥ A−C̃ logB∗

3

Multiply by q · 3m.

Before:
|p2k − q3m| > C

max(2k, 3m)1−ε

max(p, q)
.

The new bound wins when max(p, q) < max(2k, 3m)o(1).

In particular, when p = q = 1:

|2k − 3m| > max(2k, 3m)

max(k,m)C
vs |2k − 3m| > C21−εk.

p12
k1 + p23

k2 + p35
k3 for k1, k2, k3 ∈ Z>0, p1, p2, p3 ∈ Z.

Recall: N(a, b) is the number of non-zero digits in the base b expansion of a.

Theorem (Stewart). There is an effective absolute constant C such that

N(a, 2) +N(a, 3) ≥ log log a

log log log a+ C
− 1,

for a ∈ Z≥0.

Digit expansion of a
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a = p2k1 + e1.

We need pKe1 < 2k1 where K = C log log2 a (this is an upper bound for the exponent of max(p, q, 10)
in the proposition). Previously we have pe1 < 2k1(1−ε).

Alternative to heights of minimal polynomials (is better behaved under operations like addition):

Definition 1.11 (Mahler measure). Let P ∈ C[X]

P (X) = adX
d + ad−1X

d−1 + · · ·+A0

= ad(X − α1) · · · (X − αd)

Then we define

M(P ) = |ad| ·
d∏

j=1

max(1, |αj |).

We could define the height of an algebraic number α as

H(α) = M(fα)
1

deg fα ,

but instead we will define it in a different (but equivalent) way.Lecture 6

Consider two algebraic integers α, β, and assume

[Q[α+ β] : Q] = [Q(α) : Q]× [Q(β) : Q].

This means that the Galois-conjugates are αi + βj where αi runs through the conjugates of α and βj

runs through the conjugates of β.

Then

M(fα+β) =
∏
i,j

max(1, |αi + β|)

≤
∏
i,j

2max(1, |αi|)max(1, |βj |)

= 2d1d2

(∏
i

max(1, |αi|)

)d2
∏

j

max(1, |βi|)

d1

= 2d1d2M(fα)
d2M(fβ)

d1

Recall that we mentioned that we could define

H(α) = M(fα)
1

deg fα .

Then would have
H(α+ β) ≤ 2H(α)H(β).

Similarly,
H(αβ) ≤ H(α)H(β).
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Proposition. Let P ∈ C[X] of degree d. Then

2−dH(P ) ≤M(P ) ≤ (d+ 1)H(P ).

Proof. For the upper bound:

logM(P ) =

∫ 1

0

log |P (e−2πit)|dt.

Known as Jensen’s formula (enough to prove for P of degree 1).

Note that
|P (X)| ≤ (d+ 1)H(P )

for all |X| = 1. This with Jensen’s formula gives the upper bound. For the lower bound:

P (X) = adX
d + · · ·+ a1X + a0.

Then ∣∣∣∣ajad
∣∣∣∣ = ∑

{k1,...,kj}⊂{1,...,d}

|ak1
| · · · |akj

|︸ ︷︷ ︸
≤M(f)/|ad|

.

The number of terms is ≤ 2d. Hence |aj | ≤ 2dM(P ).

Absolute Values

Let K be a number field. Then a function | • | : K → R≥0 is an absolute value if:

• |αβ| = |α||β|

• |α+ β| ≤ |α|+ |β| for all α, β ∈ K

Example.

• Trivial absolute value: |α| = 0 for all α ∈ K.

• Let σ : K → C be an embedding. Then |α|σ = |σ(α)|.

• Let P ⊂ OK be a non-zero prime ideal lying above p ∈ Z. (This means p ∈ P ).
Then we define ordP on K as follows: for α ∈ OK , ordP (α) is the largest m such that
Pm | αOK . For α, β ∈ OK , ordP (α/β) = ordP (α)− ordp(β).
Let eP = ordP (p) (ramification index). Then we define

|α|P = p− ordP (α)/ep .
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Comment on the normalisation: for α ∈ Q, we have |α|σ = |α|∞, and |α|P = |α|p.

The places of K are MK comprises:

• all embeddings σ : K → C such that σ(K) ∈ R

• one from each complex conjugate pairs from the rest

• all (non-zero) prime ideals

For v ∈MK , | • |v denotes the absolute value given above.

Infinite places: MK,∞: embeddings.

Finite places: MK,f : prime ideals.

For v ∈MK , we define dv as follows:

• if v is a real embedding, then dv = 1.

• if v is complex, then dv = 2.

• if v is a prime ideal, then dv = ev · fv, where: [OK/v : Z/pZ] = fv (where p is the rational prime
below v).

Comment:
dv = [K : Qp]

where p is the place of Q below v.Lecture 7

L/K extension of number fields, then w ∈ML lies above v ∈MK ; in notation w | v.

If both are embeddings and w|K = v or w|K = v or both are finite and w lies over v as prime ideals,
i.e. w | vOL.

Remark.
∑

v|∞ dv = [K : Q],
∑

v|p dV = [K : Q].

Proposition (Product formula). Let K be a number field. Then for all α ∈ K 6= 0, we have∏
v

|α|dv
v = 1.

Proof. We compute N(αOK) in two ways.

N(αOK) =
∏

v∈MK,f

N(v)ordv(α) =
∏

v∈MK,f

pfv·ordv(α),

16



where p is the rational prime lying below v.

Recall |α|v = p− ordv(α)/ev = p− ordv(α)·fv/dv . So

N(αOK) =
∏

v∈Mα,f

|α|−dv
v .

Also,
N(αOK) = |N(α)| =

∏
v∈MK,∞

|α|dv
v .

Dividing the equations gives the desired result.

Now we define

H(α) =

( ∏
v∈MK

max(1, |α|v)

) 1
[K:Q]

.

We will also use h(α) = logH(α). We won’t be using that much, but we mention it mostly because it
is used in the literature.

H is known as “multiplicative height”, while h is known as “logarithmic / absolute / Weil height”.

Proposition 1.12. Let L/K be an extension of number fields. Let α ∈ K. Then H(α) as
defined above is the same for K and L.

Proof. Claim 1: If w ∈ML, v ∈MK such that w | v then |α|w = |α|v for all α ∈ K.

Claim 2:
∑

w|v dw = [L : K]dv.

Assuming these claims are true, then for α ∈ K∏
w|v

max(1, |α|w)dw = max(1, |αv|)[L:K]dv

Then ∏
w|v

max(1, |α|w)dw

 1
[L:Q]

= max(1, |αv|)
dv

[K:Q]

Which implies the desired result.

Proof of Claim 1: Will show if v, w are embeddings then

|α|w = |w(α)| = |v(α)| = |α|v.

If w, v are prime ideals, then we need

ordw(α)

ew
=

ordv(α)

ev
.
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For this, note that for all ideals I ⊂ OK , we have

ordw(I · OL) = ordw(v · OL) · ordv(I).

Use this for pOK and αOK in the role of I:

ew = ordw(v · OL)ev

ordw(α) = ordw(v · OL) · ordv(α)

Proof of Claim 2: Omitted.

Proposition. Let α ∈ Q6=0. Then

H(α) = M(fα)
1

deg(fα) .

Remark. Recall 2−dH(fα) ≤ H(α)d ≤ (1 + d)H(fα).

Proof. Enough to prove
|ad|[K:Q] =

∏
v∈MK,f

max(1, |x|v)dv ,

where K is a number field with α ∈ K.

If K = Q(α), then this is immediate from the definitions.Lecture 8

For a polynomial P ∈ K[X], we write |P |v for the maximum | • |v of all the coefficients of P .

A variant of Gauss’s lemma can be stated as follows: Let Q1, Q2 ∈ K[X]. Then |Q1Q2|v = |Q1|v|Q2|v
for v ∈MK,f .

Observe that |fα|v = 1 (for all v ∈ MK,f ) because the coefficients are coprime rational integers. We
write fα = ad(X − α1) · · · (X − αd) (we take K to be the splitting field of fα). Gauss’s lemma gives

∏
v∈MK,f

|ad|dv
v ·

∏
v∈KK,f

d∏
j=1

max(1, |αj |v))dv = 1.

Let σ be an automorphism of K such that σαj = α for some fixed j. This permutes MK,f . That is,
∀v ∈MK,f , there exists σv ∈MK,f such that |σβ|σv = |β|v. So∏

v∈MK,f

max(1, |αj |v)dv =
∏

v∈MK,f

max(1, | σαj︸︷︷︸
=α

|σv)dσv

=
∏

v∈MK,f

max(1, |α|v)dv

18



By the product formula: ∏
v∈MK,f

|ad|dv
v =

∏
v∈MK,∞

|ad|−dv
v = |ad|−[K:Q].

So

 ∏
v∈MK,f

max(1, |α|v)dv


=[Q(α):Q]︷︸︸︷

d

= |ad|[K:Q] .

Lemma. Let α ∈ Q, and k ∈ Z. Then

H(ak) = H(α)|k|.

Proof. If k > 0, then this is immediate from the definition. So just need to consider k = −1:

H(α−1)d =
∏

v∈MK

max(1, |α|−1
v )dv

(d = degα). We multiply this by ∏
v∈Mv

|α|dv
v = 1.

So
H(α−1)d =

∏
v∈Mk

max(|α|v, 1)dv = H(α)d.

Let P be a polynomial in possibly several variables, with complex coefficients. Then L(P ) is defined
to be the sum of the absolute values of all the coefficients. This is sometimes called the length of P .

Proposition. Let k ∈ Z>1, n1, . . . , nk ∈ Z>0. Let P,Q ∈ Z[X1, . . . , Xk] of degree ≤ nj in Xj .
Let α1, . . . , αk ∈ Q6=0. Then:

H

(
P (α1, . . . , αk)

Q(α1, . . . , αk)

)
≤ max(L(P ),L(Q)) ·

k∏
j=1

H(αj)
kj .

In particular: H(αβ) ≤ H(α)H(β) and H(α+ β) ≤ 2H(α)H(β).
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Proof. Let K be a number field containing all αi.

H

(
P (. . .)

Q(. . .)

)[K:Q]

=
∏

v∈MK

max

(
1,

∣∣∣∣P (. . .)

Q(. . .)

∣∣∣∣
v

)dv

=
∏

v∈MK

max(|Q(. . .)|v, |P (. . .)|v)dv from product formula for Q(. . .)

Let first v ∈MK,f . Then

|P (α1, . . . , αk)|v ≤ max
j1=0,...,n1

...
jk=0,...,nk

|α1|j1v · · · |αk|jk

=

k∏
i=1

max(1, |αi|ni
v )

For v ∈MK,∞:

|P (α1, . . . , αk)|v ≤ L(P ) ·
k∏

i=1

max(1, |αi|ni
v ).

So

H

(
P (. . .)

Q(. . .)

)[K:Q]

≤ max(L(P ),L(Q))[K:Q]
k∏

i=1

∏
v∈MK

max(1, |αi|v)nidv .

Then taking a [K : Q] root of both sides gives the desired inequality.

Lemma. Let α ∈ Q ⊂ C. Then:

H(α)− degα ≤ |α| ≤ H(α)degα.

This is sometimes known as “trivial bound” or “Liouville’s bound”.

Proof.
H(α)degα =

∏
v∈MK

max(1, |α|v)dv ≥ |α|

Apply this for α−1:

|α−1| ≤ H(α−1)d = H(α)d

|α| ≥ H(α)−d

20



Theorem (Siegel). Let α be a real algebraic irrational number. Then for all ε > 0, there exists
c = c(α, ε) > 0 such that ∣∣∣∣α− p

q

∣∣∣∣ ≥ cq−
√
2d−ε

for all p, q 6= 0 ∈ Z.

We will spend the next 3-5 lectures proving this.Lecture 9

We will spend today’s lecture discussing an outline of the proof, discussing why certain parts are
necessary and also some intuition as to why one would expect this method to work.

(1) Suppose to the contrary that there are infinitely many p1

q1
, p2

q2
, . . . such that

∣∣∣α− pj

qj

∣∣∣ > 1

q
√

2d+ε
.

(2) Choose two among these appropriately, which I will denote p1

q1
, p2

q2
.

(3) Construct a polynomial P ∈ Z[X1, X2] that vanishes at (α, α) to high order.

(4) Give a lower bound on P
(

p1

q1
, p2

q2

)
.

(5) Give an upper bound on P
(

p1

q1
, p2

q2

)
.

(6) Realise that they give a contradiction.

1 variable is not enough: let P (X) be of degree n. Then P may vanihs at α to order n/d. Then we
have a lower bound of ∣∣∣∣P (p

q

)∣∣∣∣ ≥ 1

qn
,

and we might hope for an upper bound like∣∣∣∣P (p

q

)∣∣∣∣ . ∣∣∣∣α− p

q

∣∣∣∣n/d .
To get a contradiction, we need

∣∣∣α− p
q

∣∣∣n/d < 1
qn , i.e.

∣∣∣α− p
q

∣∣∣ < 1
qd

.

Lower bound ∣∣∣∣P (p1
q1

,
p2
q2

)∣∣∣∣ ≥ 1

qn1
1 qn2

2

where n1 is the degree in X1 and n2 is the degree in n2.

Upper bound:

P

(
p1
q1

,
p2
q2

)
=
∑
j1,j2

Pj1,j2(α, α)

(
α− p1

q1

)j1 (
α− p2

q2

)j2

21



where Pj1,j2(X1, X2) =
1

j1!j2!
∂j1+j2

∂X
j1
1 ∂X

j2
2

P (X1, X2). Note

(
α− p1

q1

)j1 (
α− p2

q2

)j2

≤ 1

q
j1(

√
2d+ε)

1

· 1

q
j2(

√
2d+ε)

2

= exp(−(
√
2d+ ε)(j1 log q1 + j2 log qj2)).

Index of P at (β1, β2) with respect to the weights w1, w2.

IP (β1, β2;w1, w2) = min(j1w1 + j2w2, Pj1,j2(β1, β2) 6= 0).

Use w1 = log q1, w2 = log q2. With this, we get the upper bound∣∣∣∣P (p1
q1

,
p2
q2

)∣∣∣∣ . exp(−(
√
2d+ ε) · IP (α, α)).

How big can IP (α, α) be made? We look for P in the form

P (X1, X2) =

n1∑
i1=0

n2∑
i2=0

ai1,i2X
i1
1 Xi2

2 .

The condition that Pj1,j2(α, α) = 0 is a linear equation for ai1,i2 over Q[α].

By picking a basis of Q(α) over Q, this becomes a system of d linear equations. To find P such that
IP (α, α) ≥ I we need to solve:

d · |{(j1, j2) : j1 log q1 + j2 log q2 ≤ i}| ∼ I2

2 log q1 · log q2

I can choose n,n2, I, and I want to do the following:

dI2

2 log q1 log q2
. n1n2.

exp(−(
√
2d+ ε)I) .

1

qn1
1 qn2

2
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(
√
2d+ ε)I & n1 log q1 + n2 log q2

Take nk ∼
√
2d+ε
2 · I

log qk
for some large I.

Subtleties that still need to be considered:

• Siegel’s Lemma will be needed to make sure that the Pj1,j2 are not too large.

• P
(

p1

q1
, p2

q2

)
6= 0.

Pj1,j2 → coefficient of xi2
1 xi2

2 is ai1+j1,i2+j2 ·
(
i1+j1
i1

)(
i2+j2
j2

)
, where ai1+i2,j1+j2 is the coefficient of

Xi1+j1
1 Xi2+j2

2 in P .

H(Pj1,j2) ≤ 2n1+n2H(P ).Lecture 10

Thue: P (X,Y ) = R1(X) + Y R2(X).

Let L be a linear form in K[X1, . . . , XN ] where K is a number field.

For v ∈MK : |L|v = max(|aj |v) where L = a1X1 + · · ·+ aNXN . Then define

H(L) =

( ∏
v∈MK

|L|dv
v

) 1
[K:Q]

.

By the product formula, this is invariant under multiplication by an element α ∈ K×:

|αL|v = |α|v|L|v,

so
H(αL) =

∏
v∈MK

|αL|dv
v = H(L)

∏
v∈MK

|α|dv
v = H(L).

Lemma (Siegel’s lemma). Let K be a number field of degree D. Let M,N ∈ Z>0 such that
N > MD and let H ∈ R≥1. Let L1, . . . , LM ∈ K[X1, . . . , XN ] be linear forms such that
H(Lj) ≤ H. Then there exist x1, . . . , xN ∈ Z (not all 0) such that Lh(x1, . . . , xN ) = 0 for
j = 1, . . . ,M and

|xi| ≤ (NH)
MD

N−MD .

In particular, if N ≥MD, then the bound is NH.

There is a refinement of this lemma which is due to Bombieri and Vaaler.

Corollary. Let α be an algebraic number of degree D. Let w1, w2, δ ∈ R>0, and let I ∈ R>0.
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Let n1, n2 ∈ Z>0. Suppose that

|{(i1, i2) ∈ Z2
≥0 : i1w1 + i2w2 < I}| ≤ (n1 + 1)(n2 + 1)

(1 + δ)D
.

Then there exists P 6= 0 ∈ Z[X1, X2] of degree nj in Xj such that IP (α, α,w1, w2) ≥ I and

H(P ) ≤ (4H(α))(n1+n2)δ
−1

where H(P ) is the maximal absolute value of hte coefficients.

Proof. For (i1, i2) consider:

Li1,i2 =

n1∑
j1=0

n2∑
j2=0

(
j1
i1

)(
j2
i2

)
aj1,j2 · αj1−i1+j2−i2

where aj1,j2 are variables of Li1,i2 . Then

Li1,i2((aj1,j2)j1,j2) = 0 ⇐⇒ Pi1,i2(α, α) = 0

where

P =

n1∑
j1=0

n2∑
j2=0

aj1,j2X
j1
1 Xj2

2 .

Need to find (aj1,j2)j1,j2 such that Li1,i2((aj1,j2)) = 0 for all i1, i2 with i1w1 + i2w2 ≤ I.

Apply Siegel’s lemma:
N = (n1 + 1)(n2 + 1), M ≤ N

(1 + δ)D
.

Then
MD

N −MD
≤ MD

(1 + δ)MD −MD
= δ−1.

We need to estimate H(Li1,i2). For finite places v,

|Li1,i2 |v ≤ max(1, |α|v)n1+n2 .

For infinite places:
|Li1,i2 |v ≤ 2n1 · 2n2 max(1, |α|v)n1+n2

Then
H(Li1,i2) ≤ 2n1+n2 ·H(α)n1+n2 =: H.

Then Siegel’s lemma gives the bound

[2n1+n2H(α)n1+n2 (n1 + 1)(n2 + 1)︸ ︷︷ ︸
≤2n1+n2

]δ
−1

.

24



Proof of Siegel’s lemma for K = Q. We can assume that the coefficients of each Lj are integers, and
that they are relatively prime. Then each coefficient is bounded by H. Take Y =

⌊
(NH)

MD
N−MD

⌋
.

Consider (y1, . . . , yN ) ∈ {0, 1, . . . , Y }N . Evaluating Lj at all such (y1, . . . , yN ) we have

maxLj(y1, . . . , yN )−minLj(y1, . . . , yN ) ≤ Y · HN.

The number of possible values of Lj(y1, . . . , yN ) is ≤ Y ·H ·N + 1.

Claim: (YH ·N + 1)M < (Y + 1)N .

Indeed:

Y =
⌊
(N · H)

M
N−M

⌋
Y + 1 > (N · H)

M
N−M

(Y + 1)N > (N · H)M · (Y + 1)M

The claim follows by
NHY + 1 < NH(Y + 1).

Note that the above line uses the fact that H ≥ 1!

By the box principle, there exist (y1, . . . , yN ) 6= (z1, . . . , zN ), with entries bounded by Y , such that

Lj(y1, . . . , yN ) = Lj(z1, . . . , zN ) ∀j = 1, . . . ,M.

Lecture 11
In the K = Q case, a key step is that for L ∈ Z[X1, . . . , XN ] and H(L) ≤ H, the points L(y1, . . . , yN )
are integers confined in an interval of length NHY (where y1, . . . , yN = 0, . . . , N).

In the general case, consider the map:

Φ : K → Rn · Cs ∼= RD

α 7→ (v(α))v∈MK,∞

The v-component of Φ(L(y1, . . . , yN )) is confined in an interval (or box) of size NY · |L|v.

Let α = L(y1, . . . , yN )− (z1, . . . , zN ) 6= 0. By the product formula,∏
v∈MK,∞

|α|dv
v =

∏
v∈MK,f

|α|−dv
v ≥

∏
v∈MK,f

|L|dv
v .
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Make sure
∏

v lv ≤ RHS of above.

Non-vanishing:

Proposition. For every ε > 0, there exists C = C(ε) such that the following holds. Let
n1, n2 ∈ Z>0, and let p1

q1
, p2

q2
∈ Q. Suppose that

exp(n1 + n2) < q
nj/C
j

for j = 1, 2, and that log q2 > C log q1.
Let P 6= 0 ∈ Z[X1, X2] of degree in nj in Xj for j = 1, 2 such that

H(P ) < q
nj/C
j

for j = 1, 2. Then

IP

(
p1
q1

,
p2
q2

, log q1, log q2

)
≤ ε(n1 log q1 + n2 log q2).

Note: from now on, whenever we say p
q ∈ Q, we also mean gcd(p, q) = 1.

When we apply this we will have n1 log q1 ∼ n2 log q2.

Without the asymmetry assumption (log q2 > C log q1), we have the counterexample: P = (X1−X2)
n,

with p1

q1
= p2

q2
.

Alternatively: P = (R(X1)−X2Q(X1))
n (for R,Q some small degree polynomials) for any p1

q1
, p2

q2
such
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that
p2
q2

=
R
(

p1

q1

)
Q
(

p2

q2

)

Lemma. Let F, F (1), F (2) ∈ Z[X1, X2], and let i1, i2 ∈ Z≥0. Let α1, α2 ∈ R and w1, w2 ∈ R>0.
Then the following holds:

IFi1,i2
(α1, α2) ≥ IF (α1, α2)− i1w1 − i2w2

IF (1)+F (2)(α1, α2) ≥ min
j=1,2

IF (j)(α1, α2)

IF (1)F (2) = IF (1)(α1, α2) + IF (2)(α1, α2)

Baby case: P (X1, X2) = F (X1)G(X2) for some F,G polynomials.

In this case if IP ≥ ε(n1 log q1 + n2 log q2) then either IF ≥ εn1 log q1 or IG ≥ εn2 log q2.

If F vanishes at p1

q1
to order m for some m, then

(q1X1 − p1)
m | F.

The leading coefficient of F is divisible by qm1 . In particular, H(F ) > qm1 . Then H(F ) > qεn1
1 or

H(G) > qεn2
2 .

Hence H(P ) > min(qεn1
1 , qεn2

2 ), which contradicts the assumptions.

In general, we can always write

P (X1, X2) = F (1)(X1)G
(1)(X2) + · · ·+ F (h)(X1)G

(h)(X2)

with h ≤ n2.

Consider h = 2.

P (X1, X2) = F (1)(X1) ·G(1)(X2) + F (2)(X1)G
(2)(X2)

∂

∂X2
P = F (1) · ∂

∂x2
G(1) + F (2) · ∂

∂X2
G2

Lecture 12

∂

∂X2
G(2)P −G(2) ∂

∂X2
P = F (1)

(
G(1) ∂

∂X2
G(2) − ∂

∂X2
G(1) ·G(2)

)
We will later have to worry about whether the resulting polynomial is 0.
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For any h: ∣∣∣∣∣∣∣∣∣∣
P G(2) · · · G(h)

∂
∂X2

P ∂
∂X2

G(2) · · · ∂
∂X2

G(h)

...
...

. . .
...

∂h−1

∂X
(h−1)
2

P ∂h−1

∂X
(h−1)
2

G(2) · · · ∂h−1

∂X
(h−1)
2

G(h)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
F1G

(1) G(2) · · · G(h)

F1
∂

∂X2
G(1) ∂

∂X2
G(2) · · · ∂

∂X2
G(h)

...
...

. . .
...

F1
∂h−1

∂X
(h−1)
2

G(1) ∂h−1

∂X
(h−1)
2

G(2) · · · ∂h−1

∂X
(h−1)
2

G(h)

∣∣∣∣∣∣∣∣∣∣
= F1

∣∣∣∣∣∣∣∣∣∣
G(1) G(2) · · · G(h)

∂
∂X2

G(1) ∂
∂X2

G(2) · · · ∂
∂X2

G(h)

...
...

. . .
...

∂h−1

∂X
(h−1)
2

G(1) ∂h−1

∂X
(h−1)
2

G(2) · · · ∂h−1

∂X
(h−1)
2

G(h)

∣∣∣∣∣∣∣∣∣∣
The degree increases h-fold, but not the index.∣∣∣∣∣∣∣

P0,0 P0,1 · · · P0,h−1

...
...

. . .
...

Ph−1,0 Ph−1,1 · · · Ph−1,h−1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
F (1) F (2) · · · F (h)

F
(1)
1 F

(2)
1 · · · F

(h)
1

...
...

. . .
...

F
(1)
h−1 F

(2)
h−1 · · · F

(h)
h−1

∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣
G(1) G

(1)
1 · · · G

(1)
h−1

G(2) G
(2)
1 · · · G

(2)
h−1

G(h) G
(h)
1 · · · G

(h)
h−1

∣∣∣∣∣∣∣
where Pij =

1
i!j!

∂i+j

∂Xi
1∂X

j
2

P , Fi =
1
i!

∂i

∂Xi
1
F .

Lemma. Let F (1), F (2), . . . , F (h) be Q-linearly independent polynomials in Z[X]. Then∣∣∣∣∣∣∣∣∣∣
F (1) F (2) · · ·F (h)

F
(1)
1 F

(2)
1 · · · F

(h)
1

...
...

. . .
...

F
(1)
h−1 F

(2)
h−1 · · · F

(h)
h−1

∣∣∣∣∣∣∣∣∣∣
6= 0.

(Wronskian)

Proof of Proposition assuming the lemma. Suppose to the contrary that the proposition does not hold
for some P, p1

q1
, p2

q2
. Write P = F (1)G(1) + · · ·+F (h)G(h) such that h is minimal. Then h ≤ n2 +1 and
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the F (1), · · · , F (k) and G(1), . . . , G(h) are Q-linearly independent. Then consider

P =

∣∣∣∣∣∣∣
P0,0 · · · P0,h−1

...
. . .

...
Ph−1,0 · · · Ph−1,h−1

∣∣∣∣∣∣∣
and

F =

∣∣∣∣∣∣∣
F0,0 · · · F0,h−1

...
. . .

...
Fh−1,0 · · · Fh−1,h−1

∣∣∣∣∣∣∣G =

∣∣∣∣∣∣∣
G0,0 · · · G0,h−1

...
. . .

...
Gh−1,0 · · · Gh−1,h−1

∣∣∣∣∣∣∣
Then P(X1, X2) = F(X1)G(X2) 6= 0 by the above Lemma.

Note degXj
P ≤ hnj , degF ≤ n1, deg G ≤ n2. Also

H(P) ≤ h!︸︷︷︸
ways to multiply entries

( (n1 + 1)(n2 + 1)︸ ︷︷ ︸
monomials in the entries

)h (2n1+n2HP )h︸ ︷︷ ︸
coefficients of entries

≤ 2(n1+n2)h2(n1+n2)hq
hnj/C
j

for j = 1, 2.

H(P) = H(F)H(G). Then

H(F) ≤ (8n1+n2q
nj/C
j )

≤ (q
hn1/C
j )h

H(G) ≤ (8n1+n2q
n2/C
2 )

≤ (q
hn2/C
j )h

IPi,j
≥ IP − i log q1 − j log q2. If j ≤ εh

10 + 1, log q1 < ε
10 log q2. By the indirect assumption

IP ≥ ε(n1 log q1 + n2 log q2),

IPi,j ≥
ε

2
n2 log q2 +

ε

2
n1 log q1.

Lecture 13

IP

(
p1
q1

,
p2
q2

)
≥ ε2

20
h(n1 log q1 + n2 log q2).

If F vanishes to order m at p1

q1
, then qm1 divides the leading coefficient of F . In particular, qm1 ≤ H(F ).

Then
IF

(
p1
q1

; log q1

)
≤ logH(F) ≤ 10hn1 log q1

C
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IG

(
p2
q2

; log q2

)
≤ logH(G) ≤ 10hn2 log q2

C

If C is sufficiently large in terms of ε, then

IP

(
p1
q1

,
p2
q2

)
< IF

(
p1
q1

)
+ IG

(
p2
q2

)
.

A contradiction.

Now we prove the lemma from earlier:

Lemma. Let F (1), F (2), . . . , F (h) be Q-linearly independent polynomials in Z[X]. Then∣∣∣∣∣∣∣∣∣∣
F (1) F (2) · · ·F (h)

F
(1)
1 F

(2)
1 · · · F

(h)
1

...
...

. . .
...

F
(1)
h−1 F

(2)
h−1 · · · F

(h)
h−1

∣∣∣∣∣∣∣∣∣∣
6= 0.

(Wronskian)

Proof. The statement does not change if we replace F (j) by aF (i) + bF (j) for some a, b ∈ Q and
i ∈ {1, . . . , h} provided b 6= 0.

Then we may assume: F (i) = Xmi + lower order terms and the mi are distinct.

We will prove that: ∣∣∣∣∣∣∣∣∣
Xm1 · · · Xmh(

m1

1

)
Xm1−1 · · ·

(
mh

1

)
Xmh−1

...
. . .

...(
m

h−1

)
Xm1−h+1 · · ·

(
mh
h−1

)
Xmh−h+1

∣∣∣∣∣∣∣∣∣ 6= 0.

Then this is the leading term of th Wronskian, so this will prove the claim. The determinant is equal
to: ∣∣∣∣∣∣∣

(
m1

0

)
· · ·

(
mh

0

)
...

. . .
...(

m1

h−1

)
· · ·

(
mh

h−1

)
∣∣∣∣∣∣∣ ·XM

Supose to the contrary that a non-trivial linear combination of the rows is (0, 0, . . . , 0). Now the i-th
row is a polynomial of degree i− 1evaluated at m1, . . . ,mh. Then the linear combination of the rows
is a non-zero polynomial of degree ≤ h− 1 evaluated at m1, . . . ,mh.

Theorem. Let α be an irrational, real algebraic number of degree d ≥ 2. Then for all ε > 0,
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there exists C = C(α, ε) such that ∣∣∣∣α− p

q

∣∣∣∣ > Cq−
√
2d−ε,

for all p
q ∈ Q.

Proof. Suppose to the contrary that there are infinitely many p
q with∣∣∣∣α− p

q

∣∣∣∣ < q−
√
2d−ε.

Then fix ε0 > 0 sufficiently small in terms of α, ε and let C be the constant when the proposition is
applied with ε0 in place of ε.

Now let p1

q1
, p2

q2
be such that ∣∣∣∣α− p1

q1

∣∣∣∣ , ∣∣∣∣α− p2
q2

∣∣∣∣ < q−
√
2d−ε

and
log q1 > C · ε−1

0 log q2 > C log q1.

We use Siegel’s lemma to construct P (X1, X2) that vanishes at (α, α) to high order.

We choose n1, n2 ∈ Z such that

n1 log q1 ≤ n2 log q2 ≤ n1 log q1 + log q1.

We want a polynomial P such that

IP (α, α) ≥
n1 log q1 + n2 log q2√

2d+ ε
10

.

For this we need to estimate

|{(i1, i2) ∈ Z2
≥0 : i1 log q1 + i2 log q2 ≤ I}| ≤ (I + log q1 + log q2)

2

2 log q1 log q2

≤ (n1 + 1)(n2 + 1)

(1 + δ)d
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This is because
I ∼ 2n1 log q1√

2d
∼ 2n2 log q2√

2d

so
I2

2 log q1 log q2
∼ 2n1 · 2n2

2 · 2d
=

n1n2

d
.

Lecture 14

So we find P ∈ Z[X1, X2] such that IP (α, α; log q1, log q2) ≥ I and H)(P ) ≤ (4H(α))δ
−1(n1+n2). We

need:
H(P ), exp(n1 + n2) ≤ q

nj/C
j ∼ q

n1/C
1

for j = 1, 2 and log q2 > C log q1. This will be fine if (4H(α))δ
−1

< qC1 . This is fine if ε0 is sufficiently
small with respect to α and δ.

Then IP

(
p1

q1
, p2

q2

)
≤ ε0(n1 log q1 + n2 log q2). Then there exists P̃ a partial derivative of P such that

H(P̃ ) ≤ (8H(α))δ
−1(n1+n2),

ID̃(α, α) ≥ I − ε0(n1 log q1 + n2 log q2) ≥
n1 log q1 + n1 log q2√

2d+ ε
5

,

if ε0 is sufficiently small.

P̃
(

p1

q1
, p2

q2

)
6= 0. Then ∣∣∣∣P̃ (p1

q1
,
p2
q2

)∣∣∣∣ > 1

qn1
1 qn2

2

.
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Taylor’s formula:

P̃

(
p1
q1

,
p2
q2

)
=
∑
i1,i2

P̃i1,i2(α, α)

(
α− p

q

)i1 (
α− p2

q2

)i2

If i1, i2 are such that Pi1,i2(α, α) 6= 0, then

i1 log q1 + i2 log q2 >
n1 log q1 + n2 log q2√

2d+ ε
5

hence ∣∣∣∣α− p1
q1

∣∣∣∣i1 ∣∣∣∣α− p2
q2

∣∣∣∣i2 < exp

(
−(
√
2d+ ε) · n1 log q1 + n2 log q2√

2d+ ε
5

)

< (qn1
1 qn2

2 )
−

√
2d+ε√
2d+ ε

5

The exponent is smaller than −1!

Now estimate the coefficients:

P̃i1,i2(α, α) ≤ (n1 + 1)(n2 + 1)(8H(α))δ
−1(n1+n2) ·max(1, |α|)n1+n2

< C1(α, ε)
n1+n2

and

P̃

(
p1
q1

,
p2
q2

)
≤ (n1 + 1)(n2 + 1)C1(α, ε)

n1+n2 · (qn1
1 qn2

2 )
−

√
2d+ε√
2d+ ε

5

≤ (2C1(α, ε))
n1+n2 · (qn1

1 qn2
2 )

−
√

2d+ε√
2d+ ε

5

< (qn1
1 qn2

2 )−1

Contradiction.

Theorem (Gelfond-Schneider). Let λ1, λ2 be logarithms of non-zero algebraic numbers. Then
λ1, λ2 are linearly independent over Q if and only if they are linearly independent over Q.

We will prove this by assuming λ1

λ2
∈ Q \ Q, and then showing that a particular determinant is both

equal to zero and not equal to zero, hence getting a contradiction.

Before doing this, we will discuss how the previous proof could have been instead been phrased using
determinants.

We considered some functions ϕ1, . . . , ϕL which were some enumeration of Xj1
1 Xj2

2 . Then we used
Siegel’s lemma to find a1, . . . , aL such that D = a1ϕ1 + · · · + aLϕL vanishes at u1 = (α, α) to some
order. (Note that P also vanishes at all Galois-conjugates of (α, α): u2, . . . , ud). Then we find an
argument to show that P also vanishes at ud+1 =

(
p1

q1
, p2

q2

)
to some order.
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This means that for i = 1, . . . , L there exists k(i) ∈ {1, . . . , d + 1} and some partial differentiation
operator ∂i such that ∂iP (uk(i)) = 0. We also showed that P with so much vanishing cannot exist.

Let:

M =

∂1ϕ1(uk(1)) · · · ∂Lϕ1(uk(l))
...

. . .
...

∂1ϕL(uk(1)) · · · ∂LϕL(uk(L))


Then P having all that vanishing is equivalent to

(a1, . . . , aL)M = (0, . . . , 0).

Now the existence of P is equivalent to detM = 0.Lecture 15

Let λ1, λ2 ∈ R6=0, and α1 = eλ1 , α2 = eλ2 ∈ Q. Let β = λ2

λ1
∈ Q \ Q. So we assumed that Gelfond-

Schneider is false. We aim for a contradiction.

Let T0, T1, S ∈ Z>0 with
L := (T0 + 1)(2T1 + 1) = (2S + 1)2.

Consider the “monomials”
Xτ exp(tλ1X)

for τ = 0, . . . , T0, t = −T1, . . . , T1 and the points s1 + βs2 for s1, s2 = −s, . . . , s.

Notation. [−] τ,t
s1,s2

means a matrix with rows indexed by τ, t and columns indexed by s1, s2.

Let

∆ = det[(s1 + βs2)
τ · exp(tλ1(s1 + βs2))] τ,t

s1,s2

= det[(s1 + βs2)
ταts1

1 αts2
2 ] τ,t

s1,s2

Steps:

(1) Give an analytic upper bound on ∆

(2) Give an arithmetic lower bound on ∆

(3) “zero estimate” =⇒ ∆ 6= 0.

Steps (1) and (2) will be done in such a way that together they will give ∆ = 0. Then this will
contradict (3).

We will alternate between viewing (s1 + βs2)
τ · exp(tλ1(s1 + βs2)) as a function of a single variable

(function of s1 + βs2) and thinking of it as a function of two variables (function of s1 and s2).

Upper bound
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Proposition. For n ∈ Z>0, there exists c = c(n) > 0 such that the following holds:
Let L ∈ Z>0, E ∈ R>1. Let f1, . . . , fL : Cn → C be analytic functions (here, analytic means
convergent power series on Cn). Let ξ1, . . . , ξL ∈ Cn. Let r = maxs=1,...,L

j=1,...,n
|ξs,j |. Then

det[ft(ξs)]t=1,...,L
s=1,...,L

≤ E−cL1+ 1
n · L! ·

L∏
t=1

|f |Er.

Notation. |f |R = max|x1|,...,|xn|≤R |f(x1, . . . , xn)|.

Corollary. With ∆, T0, T1, S, L as above, there exists c, C > 0 depending only on β, z, such
that for all E ∈ R≥e:

|∆| ≤ exp(−cL2 logE + CL · T0 log(ES) + CLT1ES).

Proof. We take n = 1 and some E ≥ e. We have |s1 + βs2| < C0 · S with C0 = C0(β).

|zτ exp(tλ1z)| < exp(C1T0 · logES + C1T1ES)

for |z| < E · C0 · S, with C1 = C1(β, λ1).

One possible choice of the parameters: E = e. S ∼ L
1
2 , T0 ∼ L1−ε, T1 ∼ Lε. In this case:

|∆| = exp(−cL2).

(for large L).

Lemma (Schwart’s Lemma). Let f be a holomorphic function on DR the disc of radius R with
a zero of order k at 0. Then: for all z ∈ DR:

|f(z)| ≤ |z|
K · |f |R
RK

.

Proof. The maximum modulus principle for f(z)
zK .

[Proof of Proposition. ] We apply Schwart’s Lemma for

f(z) = det[ft(z · ξs)]t
s

and R = E. Note: |F |E ≤ L! ·
∏T

t=1 |ft|Er.
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So the proposition follows if we show that F vanishes to order cL1+ 1
n at 0. We prove this. Enough to

do it when each ft is of the form za1
1 · · · zan

n for some a1, . . . , an ∈ Z depending on t.

This is because all fts are infinite linear combinations of such fts, and hence the determinant can
be written as an infinite combination of special determinants. Furthermore we may assume that the
(a1, . . . , an) are distinct for different ts.

Observe: det[ft(z · ξs)]t
s
= z

∑
deg ft · det[ft(ξs)]t

s
if each ft is of the special form.

The number of monomials with degree ≤ d is at most dn. We take d =
⌊(

L
2

) 1
n

⌋
. Then at least half of

the fts have degree ≥ d. So
∑

deg ft ≥
(
L
2

)
· d ≥ c · L1+ 1

n .

Lecture 16

Proposition (1). Let S = (T0 + 1)T1 be non-negative integers. Let w1, . . . , wT1
and ξ1, . . . , ξS

be two sets of distinct real numbers.
Then

det[ξτS exp(wtξS)]τ,t
s
6= 0,

with: τ = 0, . . . , T0, t = 1, . . . , T1, s = 0, . . . , S.

alternant / interpolation determinant

Proposition (2). Let T ∈ Z≥1, let w1, . . . , wT be distinct real numbers. Let P1, . . . , PT ∈ R[X]
be non-zero. Then the function

F (x) = P1(x)e
w1x + · · ·+ PT (x)e

wT x

has at most degP1 + · · ·+ degPT + T − 1 real zeroes counting multiplicities.

Proposition (2) =⇒ Proposition (1). Suppose to the contrary that det = 0. Then there exists aτ,t ∈
R not all 0 such that ∑

aτ,tx
τ exp(wtx)

vanishes for all x = ξ1, . . . , ξS . This is a function of the type in Proposition (2). Each polynomil is
of degree ≤ T0, and there are T1 many of them, so there can be no more than T0 · T1 + T1 − 1 < S
zeroes.

Lemma 1.13. Let f be a C∞ function on R with N real zeroes. Then f ′ has at least N − 1
zeroes.

Corollary of Rolle’s Theorem.
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Proof of Proposition (2). By induction on N := degP1 + · · ·+ degPT + T − 1. If N = 0, then T = 1
and degP1 = 0. So F (x) = a · exp(w1x) for some a 6= 0. This indeed has no zeroes.

Suppose N > 0 and the claim holds for N − 1.

We assume as we may that w1 = 0 (if not, then replace wj by wj−w1, which has the effect of replacing
F by F · e−w1·x).

Then by the lemma, F has at most one more zero than

F ′ = P1(x)
′︸ ︷︷ ︸

degP1−1

+(P ′
2(x) + P2(x)ww)e

w2x︸ ︷︷ ︸
degP2

+ · · ·

By the induction hypothesis, F ′ has at most N − 1 zeroes, so F has at most N zeroes.

Now we return to proving Gelfond-Schneider.

Let z1, z2 ∈ R6==0 such that αj = eλj ∈ Q for j = 1, 2.

We aim for a contradiction. We have integers L, T0, T1, S such that

L = (T0 + 1)(2T1 + 1) = (2S + 1)2.

Let
∆ = det[(s1 + βs2)

τ exp(λ1t(s1 + βs2))] τ,t
s1,s2

.

Last time:
log |∆| ≤ −cL2 logE + CLT0 logES + CLT1ES

where E ∈ R>1 arbitrary.

Apply Proposition (1) with ξS = (s1 + βs2) with some enumeration of s1, s2 and wt = λ1t. Then
∆ 6= 0.

Recall:
∆ = det[(s1 + βs2)

ταts1
1 αts2

2 ] τ,t
s1,s2

.

Then
∆ = P (β, α1, α2)

for some P ∈ Z[X,Y, Z]. So:

H(∆) ≤ L(P ) ·H(β)T0·L ·H(α1)
T1S·LH(α2)

T1SL

using
L(P1, P2) ≤ L(P1)L(P2)

and
L
(∑

Pj

)
≤
∑
L(Pj)
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we get
L(P ) ≤ L! · (2S)T0L.

Liouville bound:
log |∆| > −C(logL! + T0L logS).

Take: E = 10.

Then we have a contradiction if

−cL2 + CLT0 logS + CLT1S < −C(L · logL+ T0L logS + T1LS).

I want:
L2 > C(T0L logS + LT1S).

Take: S ≈ L
1
2 , T0 ≈ L1−ε, T1 ≈ Lε.Lecture 17

Theorem (Nesterenko). Let T0, T1, N,M ∈ Z>0. Let Σ1,Σ2 ⊂ C2 such that |Σ1| = N ,
|Σ2| = M , and the exponentials of the second coordinates of Σ1 and the first coordinates of Σ2

are distinct. Let P ∈ C[X,Y ] of degree ≤ T0 in X, and ≤ T1 in Y . Suppose that P (X, exp(y))
vanishes on Σ1 +Σ2. Then

N ≤ T1 or M ≤ T0(T1 + 1).

Proof. If P (X,Y ) = P̃ (X,Y )·Y , then P (X, exp(y)) vanishes at exactly the same places as P̃ (X, exp(y)).
So we may assume Y - P (X,Y ). Suppose that N > T1, and write Σ1 = {(ξ1, η1), . . . , (ξN , ηN )}. Then
P (ξj+X, exp(ηj+y)) vanishes on Σ2 for all j = 1, . . . , N . We write P (X,Y ) = R1(X)Y k1+· · ·+RKY kK

with 0 = k1 < k2 < · · · < kK ≤ T1.

Then
P (ξj +X, exp(ηj + y)) = R1(ξj +X) · exp(ηj)k1 · exp(y)k1 + · · · .

Write
Qi,j(X) = Ri(ξj +X) exp(ηj)

ki .

Then

P (ξj +X, exp(ηj + y)) =

n∑
i=1

Qi,j(X)(exp(y))ki .

I look for polynomials A1, . . . , Ak ∈ C[X] such that

K∑
j=1

Aj(X)P (ξj +X, exp(ηj + y)) = B(X) ∈ C[X] (∗)

such that degB ≤ T0(T1+1), and then since B vanishes at the first coordinates of Σ2, M ≤ T0(T1+1)
will follow.
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Lemma. Let Qij ∈ C[X] for i, j = 1, . . . ,K for some K ∈ Z>0. Then there exists A1, . . . , Ak ∈
C[X] such that ∑

i

AiQij =

{
det[Qij ] if j = 0

0 otherwise

Proof. Let [Q̃ij ] be the adjugate of [Qij ]. Then

[Q̃ij ] · [Qjk] = det[Qjk] · id .

Let A1, . . . , Ak be the first row of [Q̃ij ].

Q11(X) · · · Q1k(X)
...

. . .
...

Qk1(X) · · · Qkk(X)


exp(y)e1

...
exp(y)ek

 =

P (ξ1 +X, exp(ηi + y))
...

P (ξk +X, exp(ηk + y))


Premultiply this by the row vector (A1(X), . . . , Ak(X)). We get (∗) with B = det[Qij .

degB ≤ T0K ≤ T0(T1 + 1).

We need to make sure that B 6= 0

The leading term of Qij is ai · exp(ηj)ki ·XdegRi , where ai is the leading coefficient of Ri.

To show B 6= 0, we will consider the leading term of B:

det[ai exp(ηj)
kiXdegRi ]ij = det[exp(ηj)

ki ]ijX
∑

degRi

∏
ai.

Lemma. Let K ∈ Z≥1, wne let 0 = k1 < · · · < kK ∈ Z. Let A ⊂ C such that |{exp(η) : η ∈
A}| > kK . Then there exists a choice of η1, . . . , ηK ∈ A such that

det[exp(ηi)
kj ] 6= 0.

Proof. By induction on K. K = 1 is true.

Suppose K > 1, and the claim holds for K − 1. Consider the determinant:∣∣∣∣∣∣∣∣∣
exp(η1)

k1 · · · exp(ηK)kK

...
. . .

...

exp(ηK−1)
k1 · · · exp(ηkK

K−1

zk1 · · · zkK

∣∣∣∣∣∣∣∣∣ = D(z)

which has the property that the upper left (K − 1)× (K − 1) minor is 6= 0.
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Now D is a polynomial which is 6= 0 of degree kK , so it has at most kK many 0s. Choose ηK such
that exp(ηK) is not one of them.

Lecture 18

Theorem. Let d ≥ 3. Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of degree d without
repeated factors. Let G(X,Y ) ∈ Z[X,Y ] be of degree ≤ d − 1. Assume F − G is irreducible.
Then

F (X,Y ) = G(X,Y ) X,Y ∈ Z

has at most finitely many solutions.

Schinzel proved this only assuming that F 6= aQn for some irreducible Q of degree ≤ 2. He used
Siegel’s theorem on integral points. If an algebraic curve has infinitely many points, then it has genus
D and at most 2 points at infinity. Our proof is based on an argument of Corvaja and Zannier for
proving Siegel’s theorem.

Subspace theorem: Let V be a vector space of dimension n over Q. Let e
(0)
1 , . . . , e

(0)
n and e1, . . . , en

be two bases of V . Then for all ε > 0, there exists a finite number of elements f1, . . . , fm ∈ V such
that all ϕ ∈ V ∗ that solves:

n∏
i=1

|ϕ(ei)| ≤ H(ϕ(e
(0)
1 ), . . . , ϕ(e(0)n ))−ε (∗)

with ϕ(e
(0)
i ) ∈ Z for all i = 1, . . . , n, ϕ satisfies ϕ(fj) = 0 for some j ∈ {1, . . . , n}.

∃αi,j ∈ Q such that
ei =

∑
j

αije
(0)
j

and Li = αi1X1 + · · ·+ αinXn. ϕ satisfies (∗) if and only if

(x1, . . . , xn) = (ϕ(e
(0)
1 ), . . . , ϕ(e(0)n )) ∈ Zn

satisfies
∞∏
i=1

|Li(x1, . . . , xn)| < H(x1, . . . , xn)
−ε.

Let F,G be as in the theorem, and write P = F −G.

We assume that Y - F .

Then there exists α1, . . . , αd ∈ Q distinct such that

F (X,Y ) = (X − α1Y ) · · · (X − αdY ).

Write Γ for the set of (x, y) ∈ C2 with P (x, y) = 0. Then for (x, y) ∈ Γ we have

F (x, y) ≤ C(|x|+ |y|)d−1.
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By a similar argument to the lemma for Thue’s equation, for all ε > 0 there exists R = R(P, ε) such
that (x, y) ∈ Γ with |x|+ |y| > R, then

∣∣∣xy − αj

∣∣∣ < ε for some j.

We pick a small ε > 0, in particular |αi − αj | > 2ε for i 6= j. We define

Γ0 = {(x, y) ∈ Γ : |x|+ |y| < R}

Γj =

{
(x, y) ∈ Γ : |x|+ |y| ≥ R,

∣∣∣∣xy − αj

∣∣∣∣ < ε

}
for j = 1, . . . , d.

Γ0 is bounded so only has finitely many integer points. We want to show this also for Γ1, . . . ,Γj . Write
I = PQ[X,Y ] for the ideal generated by P . Take some D ∈ Z≥1 and large enough. Write Q[X,Y ](D)

for polynomials of degree ≤ D. We will apply the subspace theorem in the vector space

V = Q[X,Y ](D)/(I ∩Q[I, Y ](D)).

Elements f ∈ V can be evaluated on Γ.

In particular, for (x, y) ∈ Γ, the map f 7→ f(x, y) is an element of V ∗. Reference basis: the monomials
XkY m for k +m ≤ D span V . Pick a linearly independent family for e

(0)
1 , . . . , e

(0)
n , where n = dimV .

If (x, y) ∈ Γ ∩ Z2, then e
(0)
i (x, y) ∈ Z. Also,

H(e
(0)
1 (x, y), . . . , e(0)n (x, y)) < C|y|D.

We need to find some lj ’s that decay on a fixed Γi.
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For j = 1, . . . , d we introduce a symbol pj and call these the “points of Γ at infinity”. We define for
f ∈ V :

ordpj
(f) = sup{m ∈ Z : f(x, y) · ym is bounded on Γj}.

Note ordpj
(f) ≥ −D.

Lemma. Let f ∈ V and let j ∈ {1, . . . , d}. If ordpj
(f) <∞, then the limit

lim
(x,y)∈Γ,|y|→∞

f(x, y)yordpj
(f)

exists and 6= 0. In addition, we have

lim
(x,y)∈Γj ,|y|→∞

(X − αY )Y −1 = αj − α

for all α ∈ Q.

Can be proved that ordpj
(f) =∞ if and only if f = 0.

Z
Y is a local uniformiser at pj = (αi, 1, 0).Lecture 19

Proof. Let j = 1, and by taking the substitution X − α1Y 7→ X, we may assume α1 = 0.

First, we show X is bounded on Γ1. To this end:

X =
G(X,Y )

a(X − α2Y ) · · · (X − αdY )
.

Note
a(X − α2Y ) · · · (X − αdY ) ≥ cY d−1

on Γ, with some c = c(P ) > 0. We may write P = 0 as:

aXY d−1 + bY d−1 + P̃ (X,Y )

(P̃ of degree ≤ d− 2 in Y ). a is not the same as in the factorisation of F and a 6= 0, but b may be 0.

This gives:
X =

−b
a

+ Y −1 ·Q(X,Y −1)︸ ︷︷ ︸
bounded

. (∗∗)

For some polynomial Q. Then limX = −b
a on Γ.

Proving the first claim, suppose we can write

f(X,Y ) = R1(X)Y k +R2(X)Y k−1 + · · · . (∗∗)

Here, negative exponents of Y are allowed, but the sum must be finite. You can always do this with
k = D if R1

(
− b

a

)
6= 0. Then f(X,Y ) · Y −k → R

(
− b

a

)
6= 0 and ordp1(f) = −k and the claim holds.
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If R1

(
− b

a

)
= 0, then use (∗∗) to write (∗∗) with k replaced by k − 1.

Iterate this.

Lemma. For each j = 1, . . . , d, there is a basis l1, . . . , ln (n = dimV ) of V such that

ordpj
(li) ≤ −D + i− 1.

Proof. By induction, we show that there l1, . . . , li−1 and Vi ⊂ V such that

V = Qbbl1 ⊕ · · · ⊕Qli−1 ⊕ Vi

ordj(lk) ≤ −D + k − 1 for k = 1, . . . , i− 1

ordpj
(f) ≤ −D + i for f ∈ Vi

i = 1 is trivial: V = V1.

So suppose i > 1 and the claim holds for i − 1. We define: li−1 to be an element in Vi−1 of minimal
order at pj . Let Vi = {f ∈ Vi−1 : ordpj

(f) > ordpj
(li−1)}.

Just need to show: Vi−1 = li−1Q⊕ Vi. To this end, let g ∈ Vi−1. Write m = ordpj
(li−1). Then

lim
Γj

g · V m
1 =: b <∞.

f = g − b

limΓj li−1 · Y m
li−1.

Then
lim
Γj

fY m = 0

so by the previous lemma, ordpj f > m. So f ∈ Vi.

For this to be useful, we need n to be large. (We need n ≥ 2D + 2).

Lemma.
dimV ≥ dD − d(d− 1).

Remark. Thinking about Γ as a projective curve, V is the space of rational functions with
poles of order at most D at each point at∞. By Riemann-Roch: dimV = dD− g+1, provided
D is large enough.

Proof. Let R(X,Y ) =
∏
(X − αjY ) (= F (X,Y )

a ). The point is that the polynomials

Qjl(X,Y ) =
R(X,Y )

X − αjY
· Y l ∈ V
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are linearly independent in V . j = 1, . . . , d, l = 1, . . . , D − d + 1. Suppose Q =
∑

j,l βjlQjl for some
βjl ∈ Q not all 0.

Want to show Q 6= 0. To that end, let βj′,l′ 6= 0 such that l′ is maximal with this property.

We can show that:
lim
Γj

Q(X,Y ) · Y −l′−d+1 = βj′,l′

∏
i={1,...,d}\{j′}

(α′
j − αi).

Uses the first lemma today.

Lecture 20

Lemma. Let f, P ∈ Z[X,Y ] without common factors in Z[X,Y ]. Then the system of equations
f(X,Y ) = P (X,Y ) = 0 has only finitely many solutions.

Proof. Z[X,Y ] ∼= Z[X][Y ] (poynomials in Y with coefficients in Z[X]). f, P have no common factors
in Z[X][Y ]. Then Gauss’s lemma gives us that they have no common factors in Q(X)[Y ]. This is
because Z[X] is a UFD and Q(X) is its quotient field.

Since Q(X)[Y ] is a Euclidean domain, there exists F,G ∈ Q(X) such that

F · P +G · f = 1.

Multiply by the common denominator D of F,G, and we get

F̃ · P + G̃ · f = D(X)

for some F̃ , G̃ ∈ Z[X]. Hence the common solutions of f = P = 0 has finitely many X-coordinates.
Then swap X and Y .

Theorem. Let F ∈ Z[X,Y ] homogeneous of degree d, without repeated factors. Let G ∈
Z[X,Y ] of degree < d. Assume F −G is irreducible in Z[X,Y ]. Then there are at most finitely
many solutions of F (X,Y ) = G(X,Y ) with X,Y ∈ Z.

F (X,Y ) = (X − α1Y ) · · · (X − αdY ). Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γd. P = F − G, I = P · Q[X,Y ].
V = Q[X,Y ](D)/I ∩Q[X,Y ](D). ordpj

(f) = sup(t ∈ Z : f(X,Y ) · Y t bounded on Γj). n = dimV .

∀j∃l1, . . . , ln ∈ V a basis such that ordpj (li) ≥ −D + i− 1. n = dimV > dD − d(d− 1).

Subspace Theorem: Let V be a vector space of dimension n over Q. Let l1, . . . , ln, l(0)1 , . . . , l
(0)
n ∈ V

be two bases. ∀ε > 0 there exists f1, . . . , fm ∈ V 6=0 such that ∀ϕ ∈ V ∗ that satisfies
n∏

i=1

|ϕ(lj)| ≤ H(ϕ(l
(0)
1 )︸ ︷︷ ︸

∈Z

, . . . , ϕ(l(0)n )︸ ︷︷ ︸
∈Z

)−ε

then ϕ(fj) = 0 for some j = 1, . . . ,m.
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Proof of Schinzel’s Theorem. We show that Z2 ∩Γj is finite for any j = 1, . . . , d. Let l1, . . . , ln ∈ V be
a basis with ord(li) ≥ −D + i− 1. Then

n∏
i=1

|li(X,Y )| ≤ C · Y
∑

− ordpj
(li) on Γj

≤ C · Y −D−1

if n ≥ 2D + 2. We set D to be large enough so that this holds.

Recall the reference basis l
(0)
j are suitable monomials of degree ≤ D, so

|l(0)i (X,Y )| < CY D.

Then for x, y ∈ Z2 ∩ Γj , we have:

H(l
(0)
i (x, y), . . . , l(0)n (x, y)) ≤ C · |Y |D.

Hence
n∏

i=1

|li(x, y)| < H(l
(0)
1 (x, y), . . .)−1

provided y is still large.

By the subspace theorem, fi(x, y) = 0 for some i = 1, . . . ,m.

To apply the lemma, we need fi ∈ Z[X,Y ]. This can be assumed: indeed, multiplying fi by an element
of Q, we can make the leading coefficient to be in Z, and all other coefficients will be algebraic integers.
Then replace fi by the sum of its Galois conjugates.

Theorem. For q ∈ Z>0 with gcd(q, 6) = 1, we write ord(q) for the order of the multiplicative
group generated by 2, 3 in Z/qZ.
Then:

lim
q→∞

ord(q)

(log q)2
=∞.

Remark. 2n3m for n < 1
2 log2 q, m < 1

2 log3 q. Hence

ord(q) ≥
(
1

2
log2 q

)(
1

2
log3 q

)
.

Theorem (Corvaja, Zannier; Hernández, Luca). Write S = {2n3m : n,m ∈ Z≥0}. Then for all
ε > 0, there are only finitely many pairs of multiplicatively independent a, b ∈ S such that

gcd(a− 1, b− 1) ≥ max(a, b)ε.
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a, b are multiplicatively independent if there does not exist n,m ∈ Z such that an = bm.

Fact: there exist infinitely many n such that

gcd(2n − 1, 3n − 1) ≥ 3n
c/ log log n

.

Lecture 21

Theorem (1). If 2, 3 - q, then
ord(q)

(log q)2
→∞.

Theorem (2). For all ε > 0, there are only finitely many pairs of multiplicatively independent
a, b ∈ S such that

gcd(a− 1, b− 1) > max(a, b)ε.

Proof of Theorem 1 using Theorem 2. Let

Λ = {(n, k) ∈ Z2 : 2n · 2k ≡ (mod q)}.

This is a subgroup of Z2, and |Z2/Λ = ord(q) The volume R2/Λ is ord(q).

Our aim is to find (n1, k1), (n2, k2) ∈ Λ∩Z2
≥0 linearly idnependent and n1, k1, n2, k2 ≤ C ord(q)/ log q,

where C is absolute.

If we can do this, then: q | gcd(2n12k1 − 2n23k2 − 1). By Theorem (2), since 2n13k1 − 1 and 2n23k2 − 1
are multiplicatively independent, we would get

q < max(2n13k1 , 2n23k2)ε

< exp(C ord(q)/ log q)ε

Taking log:

log q < C · ε ord(q)/ log q
ord(q) > C−1 · ε−1 · (log q)2

provided q is sufficiently large in terms of ε.

Now to the proof of the above stated aim: Let (ñ1, k̃1), (ñ2, k̃3 ∈ Λ that generate Λ and such that their
angle is as close to π

2 as possible.

Then this angle is between π
3 and 2π

3 :
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The area of the parallelogram spanned by (ñ1, k̃1) and (ñ2, k̃2) is at least

2√
3
‖(ñ1, k̃1)‖2‖(ñ2, k̃2)‖2 ≤ ord(q).

Minkowski’s second theorem in the geometry of numbers.

We know that q | 2|ñ1| · 3|k̃1| − 1 or q | 2|ñ1| − 3|k̃1|. Then: either |ñ1| or |k̃1| has to be ≥ 1
2 log3(q). In

particular: ‖(ñ1, k̃1)‖2 ≥ c log q (for some absolute constant c).

Then ‖(ñ1, k̃1)‖2, ‖(ñ2, k̃2)‖2 ≤ c ord(q)log q .

Proposition 1.14. Let L ∈ Q[X1, . . . , Xn] be a linear form. Then there exists C = C(L) such
that any solution x1, . . . , xn ∈ S of L(x1, . . . , xn) = 0 satisfies

|xi − xi|∞|xi − xj |2|xi − xj |3 < C (∗)

for some i 6= j ∈ {1, . . . , n}.

Remark. For x ∈ Z such that x = 2n3ky with n, k ∈ Z≥0, 2, 3 - y, then

|x|∞|x|2|x|3 = |y|.
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Note that (∗) is invariant under multiplication by elements of S.

Theorem. Let V be a vector space of dimension n over Q. Let S ⊂MQ be finite with ∞ ∈ S.
For each v ∈ S, let Λ

(v)
1 , . . . ,Λ

(v)
n be a basis of V ∗. Furthermore, let Λ

(0)
1 , . . . ,Λ

(0)
n be another

basis. Fix an extension of each | • |v from Q to Q.
Then for all ε > 0, there are finitely many ϕ1, . . . , ϕn ∈ V ∗ such that all solutions x ∈ V of

∏
v∈S

n∏
j=1

|Λ(v)
j (x)|v ≤ H(Λ

(0)
1 (x), . . . ,Λ(0)

n (x))−ε

with Λ
(0)
1 (x), . . . ,Λ

(0)
n (x) ∈ Z satisfy ϕi(x) = 0 for some i = 1, . . . , n.

Proof of Proposition. By induction on n. Suppose n = 2. As we observed the conclusion, is invariant
under dividing x1, x2 by the same element of S. Now gcd(x1, x2) ∈ S. So it is enough to prove for
solutions with gcd(x1, x2) = 1.

Let L(X1, X2) = aX1 + bX2. Then ax1 + bx2 = 0 with gcd(x1, x2) = 1 implies x1 | b and x2 | a.

So there are finitely many possibilities for x1, x2 in terms of L. Pick C that works for all.

(to be continued).

Lecture 22
“generalised S-unit equations”.

Let K be a number field: OK = {x ∈ K : |x|v ≤ 1 for all v ∈MK,f}. Let S ∈ MK be a finite
set containing MK,∞: OK,s = {x ∈ K : |x|v ≤ 1 for all v /∈ S} (“S-integers”). O×

K,s units in OK,s

(“S-units”).

Unit eqution x+ y = 1 with x, y units.

Proof (continued). Induction on d. d = 2 was checked before.

Suppose d > 2, and the claims hold for d− 1. We make some simplifying assumptions to be specified
later. We apply the subspace theorem on Qd−1 = V . The reference basis is Λ(0)

j = Xj , j = 1, . . . , d−1.
As a first approximation, we try Λ

(v)
j = Xj for all j, v. Let S = {∞, 2, 3}. Let x = (x1, . . . , xd) be a

solution of L(x1, . . . , xd) = 0. Then

∏
v∈S

d−1∏
j=1

|Λ(v)
j (x)|v = 1.

We can replace Λ
(w)
1 by

a1
an

X1 + · · ·+
ad−1

ad
Xd−1,
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where L = a1X1 + · · ·+ adXd. Then we replace |x1|w by |xn|w. We do this for some choice w.

Now back to the simplifying assumptions: We assume that |x|∞ is maximal for j = n. Then
|xn|2|xn|3 = |xn|−1

∞ . So let w ∈ {2, 3} such that |xn|w ≤ |xn|
− 1

2∞ . We may also assume |x1|w = 1. For
this, we may need to divide x by the common divisor, and rearrange the indices.

For these augmented Λ
(v)
j ’s, we get

∏
v∈S

d−1∏
j=1

|Λ(v)
j (x)|v ≤ |xn|

− 1
2∞ ≤ H(Λ

(0)
1 (x), . . . ,Λ

(0)
d−1(x))

− 1
2 .

So the subspace theorem applies with ε = 1
2 . So x1, . . . , xd−1 satisfies one of finitely many linear

equations. Apply the induction hypothesis for each of them.

Theorem 1.15. For all ε > 0, there exist finitely many multiplicatively independent pairs
a, b ∈ S such that

gcd(a− 1, b− 1) > max(a, b)ε.

Proof. Fix some ε > 0. Let a, b ∈ S multiplicatively independent and such that

d = gcd(a− 1, b− 1) > max(a, b)ε.

Our goal is to show d < C for some C = C(ε). Note: 2, 3 - d, because otherwise 2 - a, b or 3 - a, b.
Then a and b would be a power of the same prime. Not possible due to multiplicative independence.

Fix some n ∈ Z>0 sufficiently large depending on ε. We apply the subspace theorem on V =
Qn2

/{(x, . . . , x) : x ∈ Q}.

We will evaluate our functionals at the point e/d = (e1/d, . . . , en2/d) where e1, . . . , en2 is an enumer-
ation of akbl for k = 0, . . . , n− 1, l = 0, . . . , n− 1 such that e1 = 1, en2 = an−1bn−1.

Note: ei
d −

ej
d ∈ Z. This is because ei ≡ 1 (mod d). Also:

∣∣ ei
d −

ej
d

∣∣
v
≤ min

(∣∣ ei
d

∣∣
v
,
∣∣ ej
d

∣∣
v

)
for all

v ∈ S = {∞, 2, 3}. The coordinates on Qn2 will be denoted by Y1, . . . , Yn2 . All our linear forms on
V will be of the form Yi − Yj for some i 6= j. This is indeed well defined on V . Reference basis
Λ
(0)
j = Yj − Yn2 .

H
(
Λ
(0)
1

( e
d

)
, . . . ,Λ

(0)
n2−1

( e
d

))
≤ anbn.
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For v =∞:

Λ
(∞)
j = Yj+1 − Y1

|Λ(∞)
j (e/d)| = |ej+1/d|∞

Λ
(v)
j = Yj − Yn2

|Λ(v)
j (e/d)|v = |ej |v

n2−1∏
j=1

|Λ(∞)
j (e/d)|∞ ≤

 n2∏
j=1

|ej/d|∞

 · d
n2−1∏
j=1

|Λ(v)
j (e/d)|v ≤

 n2∏
j=1

|ej/d|v

 /|an−1bn−1|v

∏
v∈S

n2−1∏
j=1

|Λj(e/d)| ≤ d · (an−1bn−1) · d−n2

|ei/d|∞|ej/d|2|ej/d|3 =
1

d

Lecture 23

d = gcd(a− 1, b− 1) where a, b ∈ S are multiplicatively independent. We assume: d > max(a, b)ε for
some ε > 0. Our goal is to prove d < C(ε).

∏
v∈S={∞,2,3}

n−1∏
j=1

|Λ(v)
j (e/d)|v ≤ dan−1bn−1d−n2

. (∗)

e1, . . . , en2 is an enumeration of akbl, k, l = 0, . . . , n− 1.

(∗) ≤ max(a, b)2n−2 ·max(a, b)−ε(n2−1).

Let’s take n > 3ε−1, (∗) < max(a, b)−n.

H(Λ
(0)
1 (e/d), . . . ,Λ

(0)
n−1(e/d)) ≤ an−1bn−1.

(∗) < H(· · · )− 1
2 . Subspace theorem applies hence there exists a linear relation between e1, . . . , en2 ∈ S

(distinct by multiplicative independence of a, b).

Proposition implies
|ei − ej |∞|ei − ej |2|ei − ej | < C = C(ε)

for some i 6= j. Then ei 6= ej so ei − ej 6= 0. However, d | ei − ej .

d ≤ |ei − ej |∞|ei − ej |2|ei − ej |3 < C.
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Theorem 1.16 (Feldman). Let α ∈ Q of degree d ≥ 3. Then there exists effective C = C(α) > 0
and ε = ε(α) > 0 such that for all p

q ∈ Q,∣∣∣∣α− p

q

∣∣∣∣ > C

qd−ε
.

Remark. This is enough to solve P (x, y) = m, where P is a degree d homogeneous polynomial
without repeated factors. Thue equation.

Proposition. Let K be a number field. Then there exists r ∈ Z≥0 and u1, . . . , ur ∈ O×
K and a

constant C = C(K) such that ∀α ∈ OK , there exists α̃ ∈ OK and b1, . . . , br ∈ Z such that

H(α̃) ≤ C · |NK/Q(α)|
1

[K:Q]

|b1|, . . . , |br| ≤ C logH(α)

α = α̃ub1
1 · · ·ubr

r

Define Φ : K× → RMK,∞ : (Φ(α))v = dv · log |α|v (logarithmic embedding). Note that here K× is the
group under multiplication, while RMK,∞ is the additive group.

|NK/Q(α)| = exp

 ∑
v∈MK,∞

(Φ(α))v


H(α)[K:Q] = exp

 ∑
v∈MK,∞

max(0, (Φ(α))v)


For α ∈ OK , Σ(Φ(α))v ≥ 0. Then:

exp(‖Φ(α)‖1/2) ≤ H(α)[K:Q] ≤ exp(‖Φ(α)‖1).

For α ∈ O×
K , NK/Q(α) = 1. So

Φ(α) ∈W = {x ∈ RMK,∞ :
∑

xv = 0}.

Kronecker’s theorem: Φ−1(0) = kerΦ are the roots of unity.

Dirichlet’s unit theorem: Φ(O×
K) is a lattice in W that is a Z-module of rank dimW = r which spans

W .
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Let u1, . . . , ur be a fundamental system of units, that is Φ(u1), . . . ,Φ(ur) is a basis for the lattice
Φ(O×

K). Fix some α ∈ OK . Pick some x ∈ RMK,∞
≥0 such that∑

xv = log |NK/Q(α)|︸ ︷︷ ︸
≥0

.

x ∈ Φ(α) +W .

Then there exist y1, . . . , yr ∈ R such that

x = Φ(α) + y1Φ(u1) + · · ·+ yrΦ(ur).

There exists C = C(K) such that |yj | ≤ C · ‖Φ(α)‖1.

Let bj ∈ Z with |yj − bj | ≤ 1 and |bj | ≤ |yj |. This gives |bj | ≤ C · ‖Φ(α)‖1 ≤ C ′ logH(α).

Take: α̃ = αub1
1 · · ·ubr

r .

Φ(α̃) = Φ(α) + b1Φ(u1) + · · ·+ brΦ(ur) = x+ (b1 − y1)Φ(u1) + · · ·︸ ︷︷ ︸
(∗)

.

(∗) is in a fixed, compact region of W .

‖Φ(α̃)‖1 ≤ C + ‖x‖1.
H(α̃)[K:Q] ≤ exp(‖Φ(α̃)‖1) ≤ exp(C) ·NK/Q(α).

Lecture 24
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Theorem. α algebraic of degree d ≤ 3. Then there exists C = C(α) > 0, ε = ε(α) > 0 such
that for all p

q ∈ Q: ∣∣∣∣α− p

q

∣∣∣∣ > q−(d−ε).

Proof. Fix some α and ε > 0 small enough. Suppose that∣∣∣∣α− p

q

∣∣∣∣ < q−(d−ε)

for some p
q ∈ Q. We aim to show that q < C = C(α). We assume as we may that α is an algebraic

integer.

Let
P (X) = (X − α1) · · · (X − αd)

be the minimal polynomial of α = α1. Then:

(p− α1q) · · · (p− αdq) = Q < Cqε.

With Q ∈ Z. Then
NQ(αj)/Q(p− αjq) | Qd.

In particular:
N(p− αjq) < Cqdε.

Therefore: ∃α̃j , u1, . . . , ur, b1, . . . , br ∈ Z such that p− αjq = α̃ju
b1
1 · · ·ubr

r . Then

H(α̃j) < C · qε

|bj | < C · log q

Use |p− α1q| < q−(d−1−ε).

Then p − αjq is very close to (α1 − αj)q. Consider: (α1 − α2)(α1 − α3)q, which is similar to both of
(p− α2q)(α1 − α3) and (α1 − α2)(p− α3q).

Now more formally:∣∣∣∣1− (p− α2q)(α1 − α3)

(α1 − α2)(p− α3q)

∣∣∣∣ = ∣∣∣∣1− ((p− α1q) + (α1 − α2)q)(α1 − α3)

(α1 − α2)((p− α1q) + (α1 − α3)q)

∣∣∣∣
< Cq−(d−ε)

∣∣∣∣A− κ1

B − κ2
− A

B

∣∣∣∣ < max(κ1, κ2)

q
.
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A ∼ B ∼ q. Now use the proposition:

p− α2q = α̃2u
b1
1 · · ·ubr

r

p− α3q = α̃3w
e1
1 · · ·wer

r

H(α̃2),H(α̃3) ≤ C · qε

|b1|, . . . , |br|, |e1|, . . . , |er| < C · log q

Writing α∗ = α̃2(α1−α3)
α̃3(α1−α2)

we have:

|1− α∗ub1
1 · · ·ubr

r w−e1
1 · · ·w−er

r | < Cq−(d−ε).

H(α∗) < C · q2ε. Take log to be the principal branch, that is | Im log(•)| ≤ π. Warning: log(xy) 6=
log(x) + log(y) in general. This is Lipschitz around 1, so we get

| log(α∗) + b1 log(u1) + · · ·+ br log(ur)− e1 log(w1)− · · · − er log(wr) + 2k · log(−1)︸ ︷︷ ︸
=πi

| < Cq−(d−ε)

for a suitable k ∈ Z, and |k| < C log q.

Reminder:

Theorem. Let n ∈ Z≥1. Let α1, . . . , αn ∈ Q 6=0, and let logαj be any choice of the log of αj .
Let b1, . . . , bn ∈ Z and let Λ = b1 logα1 + · · ·+ bn logαn. Let

Aj = max(H(αj), exp(| logαj |), 10)

B∗ = max

(
|b1|

logAn
, . . . ,

|bn−1|
logAn

, |bn|, 10
)

Then there exists an effective constant C (a function of n and the degree of Q(α1, . . . , αn)) such
that Λ 6= 0 implies

|Λ| > exp(−C log(A1) · · · log(An) log(B
∗)).

So the lower bound gives:

We apply the theorem with αn = α∗. A1, . . . , An−1 < C, An < C ·q2ε. B∗ ≤ C log q
logAn

≤ C
ε . |k| < C log q.

So
|Λ| > exp(−C · ε log q · log ε−1) > q−Cε log ε−1

.

We still need to consider Λ = 0. This is equivalent to:

1 =
(p− α2q)(α1 − α3)

(α1 − α2)(p− α3q)
.

Solving this equation gives α2 = α3 or p = α1q. Neither is the case.

If we use the weaker bound for |Λ|, then we would prove:∣∣∣∣α− p

q

∣∣∣∣ > C · q−(d− ε
log log q ).
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