Diophantine Analysis

Daniel Naylor

December 4, 2024

Contents

1 Diophantine Approximation 3
1.1 Transcendence . . . . . . . i i i e e e e e e e e e e e e 10

Index 55

Lecture 1



Fact: If n # m € Z, then |[n —m| > 1.

Although this fact sounds very obvious, in this course it will be one of our most used tools.



1 Diophantine Approximation

Theorem 1.1 (Dirichlet). Assuming that:
e « is an irrational real number

Then there exist infinitely many £ € Q such that

Proof. Consider the numbers 0, a, 2a, . . ., Na for some fixed N € Z~. Consider them in R/Z = [0, 1].

Note
o LY 1L 2N, ety
"N N’ N N’ ’

By the box principle (pigeonhole principle), there exists N > ny > n; > 0 such that noa and nj«
belong to the same interval. Then:

1
[noar — nja — p| < N
for some p € Z. Take ¢ = ny —ny. Then
‘Q_P‘ <Lo1
q/ ~ Nqg " ¢q

Take N — oo, then you get an infinite sequence of rationals. If a is not raitonal, then this sequence
cannot stabilise, so we get infinitely many % as desired. O

Can we do better?

In particular for o € Q.

Theorem (Liouville). Assuming:
e « is algebraic of degree d

Then there exists ¢ > 0 such that for all g € Q with a # %, we have

Proof. Let P € Z[z] be the minimal polynomial of «, so P(«) = 0. Now note that P (%) # 0 (by



irreducibility when d > 2, and for d = 1 using the hypothesis that o # g)

)=

Note that P (%) is rational with denominator ¢?. On the other hand,

R
q z€[la—1,a+1]

provided ‘a — g‘ < 1, which we may assume. Hence

:

P C
oa— —| > —.
q‘ q?

Improvements of the exponent d in Liouville:

e Thue: g +1+¢
o Siegel: little better than 2v/d + ¢
e Dyson: v2d+¢

a— —|.

. Then

Theorem 1.2 (Roth). Assuming that:
e « is an irrational real algebraic number

Then there exists ¢ = ¢(a, ) > 0 such that for all £ € Q we have

8
a—p’>

ql ~ q2+6'

Theorem 1.3 (Thue). Assuming that:
e P(X,Y) € Z|X, Y] homogeneous of degree d > 3
o without repeated factors
e mELZ

Then the equation
PX,)Y)=m

has only finitely many solutions in Z? with ged(X,Y) = 1.

Liouville’s theorem < |P(p,q)| > 1.




Lecture 2

Lemma 1.4. Assuming that:
e P e R[X,Y] be homogeneous of degree d
o without repeated factors

Then for all p, q¢ € Z, there exists a root of P(X,1) such that

cq ?P(p,q) <

p _
o— q‘ < Cq *P(p,q).

Here ¢, C depend on P, and a fixed compact set that contains %.

Proof. Let
P(X,1)=a(X —aq)- (X — aq),
with aq, ..., a4 distinct (since we assumed no repeated factors, and characteristic 0 fields are always

separable). Without loss of generality assume that «; is the closest to g.

Then ¢y < ‘g —a;| < Cp for some constants depending on P and the compact set for j # 1. So we

get lower and upper bounds on P (%, 1) = P(p,q) - q%. O

Proof of Thue. Suppose P(p,q) = m. The lemma tells us that there exists « a root of P such that

‘p
- —o

<C-qYPpq)|=C-m-qg*
——

m

If the degree of a@ > 2, then Roth or already Thue implies that ¢ must be bounded, hence only finitely
many solutions.

For a € Q, we use Liouville. O

Let (z1,...,2,) € Z"™. The height of it is

H(xy,...,2,) = max(|z1],...,|zns])-

Theorem 1.5 (Subspace theorem, Archimedean version, Schmidt). Assuming that:
e Nnc Zzg

e Ly,...,L, linearly independent linear forms with algebraic coefficients in n-variables




Then for all € > 0 the solutions of

n
H|LJ(x1,...,xn)\ < H(z1,...,2,)" ", ()
j=1
for (z1,...,2,) € Z™ are contained in a finite collection of proper linear subspaces of Q™, which
depend only on Ly, ..., Ly, €.
_ J

Zleer Z,,_

L’/Y. ))(]_ )= F,

po( Som ¢ WMM [’/

Jee |

The volume of the region is

H(zy,...,2,) <H and H\Lj(xl,...7:rn)|<H_€
j=1

is ~ (log H)""'H~¢. Consider the paralellepipeds:
|Lj(z1,...,2n)| < H*

for some x; € R with ) k; = —¢.

This implies Roth’s theorem:

Let o € QN R irrational. Consider the linear forms

Ll(Xl,XQ) = X1 - OZXQ
Ly (X1, X2) = Xo

%—a‘ < %, then this is

Let p,q € Z. Then (%) is equivalent to |p — aqllq| < max(p,q)~c. If

equivalent to

% - a‘ < Cq~27¢. Roth’s theorem is true apart from p, ¢ contained in a finite collection
of subspaces. A subspace is of the form p + B¢ = 0 for some 5 € Q or maybe ¢ = 0.



Obvious subspaces:

o ker(Lj)
e Example n = 3: L1 = X1 —V2Xs, Ly = X1 — V2X5 + X3, Ly = X,. Consider the subspace

V= {(pa Q7O) :D,q € @} Now (*) becomes:

lp — V2q|?|q| < max(p,q)”°,

or alternatively

2
3

< ¢~ max(p,q) —&/2,

(-
q

This has plenty of solutions by Dirichlet if ¢ < 1.

e A line, that is a 1-dimensional subspace may contain only finitely many solution.

The places of Q is Mg and it consists of all prime numbers and co. For each v € Mg, we define an
absolute value on Q. | e |4 is the ordinary absolute value. If v € Mg is a prime number, this is the
v-adic absolute value, that is, for a € Z, |a|, = v~" where b € Z is maximal such that v® | a. For

7 € Q, we define ’%‘U = ||‘;‘|:. If z,y € Q, then:

1z]o|ylo = |zylo
|z +ylo < |2l + [y]o

When v # oo,

|‘T + y| < maX(|$‘va |y‘v)

This is called the ultrametric inequality.

e N
Theorem 1.6 (Subspace theorem, p-adic version with Q coeffs). Assuming that:
e« N c ZZQ
e SC Mg withoo €S
e for each v € S, let Lgv), cee LS}) be linearly independent forms with rational coefficients
in n variables
Then the solutions of
n
ITITIES @, )l < Haa7. . 20) 7,
veS j=1
with (z1,...,2,) € Z™ are contained in a finite collection of proper subspaces of Q™.
\ J




n=28={2300}, L") = X;, v e S, j = 1,2. Consider a € Z. Let a = 2"3'b with b not divisible
by 2 or 3.
lalzlalslale = 27%37 |a| = [b].

Consider X; = 2%, X, = 3!, then
2
[TITIE" @8 =1
veES j=1

Lecture 3 What happens if you replace Lg’o) with X7 — X»?

N
Proposition 1.7. Assuming that:
e >0
Then there exists ¢ = ¢(e) > 0 such that for p, q, k,m € Z~¢, we have
2k7 3m l1—¢
|p2k —q3M| > cw
max(p, q)
or p2k = ¢3™.
N J

Proof. Take n = 2, S = {2,3,00}. Let L§U) = X; for all j,v, except: Lgoo) = X5 — X;. Then the
solutions of

2
TTITILY @)l < Hozy, o)~/

veS j=1

with x1,x9 € Z are contained in the lines: X7 = 0, Xo = 0, X; = X5 plus finitely many points.
Plug in X; = p2F, X5 = ¢3™. Then

max(2k, 3m)1-¢

L(Oo)x,sc o = p2F L(Oo)x,x o <
|Ly ™ (21, @2)| Ly (z1, 32| max(p.q)

provided p, k, g, m does not satisfy the claim with ¢ = 1. Also,
L (@)l <278 LY (@ a)la <1

L (@n,mo)s <1 L (21, 20)[5 <37

SO

Assume 3™ > 2F by symmetry. Then
(%) < max(2F,3m)~/ePs,
We can assumme that p,q < 3™, for otherwise the claim is trivial. Then H(p2*,¢3™) < 32™. Then

(%) < H(p2",q3m™)~%/2.



Then either p2* = ¢3™ or p, ¢, k, m is one of finitely many exceptions.

Make ¢ small enough to rule out the exceptions. O

For a,b € Z~¢, let N(a,b) denote the number of non-zero digits in the base b expansion of a.

[ Theorem 1.8 (Senge, Strauss). We have N(a,2) + N(a,3) — 0o as a — 0. J

Despite the fact that this statement looks quite modest, the proof is not so simple.

Proof. Take a € Z: we assume that N(a,2) + N(a,3) < N for some fixed N. Consider its base 2
expansion.

First we will explore the consequences of having a large string of Os in the base 2 expansion.

k,aﬁl‘ J:DW ey I/LJ.'pé S

M=% - % 00 - Oéx*

—— —

Then a = p - 281 + ;. We know:
|p| < 210g2(01)—7€1+17 |61| < k2
Similarly: a = ¢ - 3™ + ey with |g| < 31°8s(@)=m1+1 and |ey| < 372,

2k1 k2 1
3my o pm2 S [573]'

We will make sure that
|p?”Cl —q3™ | =le1 —ea| <3 ok
Want to use the proposition. So we need:

[p2F — ¢3™| - max(p, q) < cmax(2*,3™)1 ¢,

So we want
C - 2k2 . 210g2(a)—k1 <c- 2k1(1—€).

We want
logy(a) — k1 < k1 — kj — elogy(a).



Lecture 4

n

/
N+ HDQLS

Since at most N blocks have a non-zero number, one of the blocks only has zeroes, which can be used
with the above to show that a cannot be too large. O

The constants in all results so far (except Liouville) are ineffective!

Are there any improvements of

q q

21/3 — p‘ < @
10
10101010
(suppose 100 is the best you can get with Liouville) for ¢ < 100" . No!
To demonstrate what it means that the above results are ineffective:

Suppose that we want to find all the solutions of 22 — 2y = 11. Thue says that we have finitely many.
But because it is ineffective, we have no idea how to bound the largest of these is, so would struggle
to find all solutions, even with an arbitrarily powerful computer (or an army of postdocs).

1.1 Transcendence

Liouville proved oo = "> ﬁ is transcendental.

What about e, m, 2v29
Hermite: e is transcendental.

Lindemann: If o # 0, then at least one of a or e® is transcendental.

Theorem 1.9 (Lindemann-Weierstrass). Assuming that:
e ai,...,a, € C distinct

Then e®,...,e% are linearly independent over Q (algebraic closure of Q).

10



Hilbert’s 7th problem: Let o # 0, 1, algebraic, 3 irrational algebraic. Then o is transcendental.

Note (for this problem): o = exp(S - loga) where loga is any complex number with e = q.
So in the above problem we can think of “a® is transcendental” as meaning “any choice for o is
transcendental”.

Convention: If o € R+, then loga € R.

Theorem. Let a;, a2 be non-zero algebraic numbers. Then log oy, log a are linearly indepen-
dent over Q if and only if they are linearly independent over Q.

Proof of Hilbert’s 7Tth <= above Theorem is true.

= Suppose logay,logas are dependent over Q. Then 38 € Q such that Sloga; = logay. Then
Ozf = qy either § € Q or a; = 1.

< Suppose there exists «j, as non-zero algebraic such that af = o for some 8 € Q. Then
Bloga; = logay for some choice of the logarithms. If the logarithms are 0, then we deduce
a1 = 1, a contradiction. Otherwise, we deduce that 8 € Q (by the above theorem), which is also a
contradiction. O

Theorem (Baber). Let logay,...,loga, be Q-linearly independent logarithms of algebraic

numbers. .
Then 1,log ay,...,log a, are linearly independent over Q.

e N
Conjecture 1.10 (Schanuel). Let aq,...,a, € C be linearly independent over Q. Then the
transcendence degree of Q(ay, ..., a,,e*, ..., e*") is at least n.

N J

Let aq,...,apn € Qs9, and b1,...,b, € Z. Let A; be the max of the numerator and the denominator

of a;.

Let B = max(|b1],...,|bn|). Then

bilogai + - -b,loga, close to 0 < all’1 - -al,’L" close to 1.

lab - abr — 1] > A7b - AP = exp(—(log A; +log A,)B).

1
by logay + -+ by logay| > 3 exp(—(log Ay + -+ +log A,)B).

Notation. Let o € Q, denote its minimal polynomial in Z[X] by fa.
If f € C[X], then H(f) (the height of f) is the maximal absolute value of its coefficients.

11



Lecture 5

Theorem. Let aq,...,q, € @750, Bo,-..,Bn € Q. Fix some choices of loga;. Let A; =
max(H (fa,) exp(| log 1), 10).

Let A = By + B1logag + -+ + Brlogay,. Then there exists an effective constant C' depending
on n and the degree of Q(ay, ..., an,Bo,B1,--.,Fn) such that either A =0 or

[A] > exp(—C(log A1) - - - (log An)(log B)).

N

Conjecturially: this should be

|A] > exp(—C max(log A1, ...,log A,,log B)).

-
Theorem. Let ay,...,a, € @750. Let log a; be a choice of their logarithms. Let by,...,b, € Z.
Let

Aj = max(H(f(al)), s ,H(f(an))a eXp(UOgalDa s anp(‘ logaan 10)
|b1] |br—1
B* = b, 1
max <logAn7 ’logAn’| [, 10)
A=biloga + -+ b, logay, < homogeneous
Then there is an effective constant C' that depends only on n and the degree of Q(ay, ..., ay)
such that
|A| > exp(—C(log A1), ..., (log A,)(log B*)) or A=0.
Observe
exp(Reloga;) = [a;| < H(f(ay)).
Recall
B =max(|b1],. .., |bn],log A1, ..., log Ay, 10).
Typical scenario: a,...,a,—1 fixed numbers, b, =1, b; ~ log A,,.

In the setting of Diophantine approximations, it is possible to show

1

qd—s(a) ’

p
a—=|>cla)-
Q‘

with ¢(a) and £(«) being effective constants.

p
Proposition. There is an effective absolute constant C' such that for all p, g, k, m:

max (2%, 3™)

k __ _aqm
|p2 q3 | > max(p, q, 10)—Clog(max(k,m)/ log max(p,q,10)+10) ’

or p2k = ¢3™.

12



Proof. Suppose 3™ > 2k,
A =klog2 —mlog3+1-log(p/q).

Ag = A1 = 10, A3 = HlaX(pa q, 10)

max(k, m)

B* = + 1.

log A3

Then: *
|A| > exp(—C'log Aglog B*) = A7 185"

lexp(A) — 1] > A
exp(A) — 1=

2k —m Iz _ 1’ > Ag—é’logB*
Multiply by ¢ - 3™.

Before:
max(2F, 3m)1-=

2" — 3™ > C
max(p, q)

The new bound wins when max(p, ¢) < max(2*,3m)°(),

In particular, when p = ¢ = 1:

max (2%, 3™)

2k —3m| >
| | max(k, m)¢

Vs |28 —3m| > Cc2t ek,

p12F + pa3k2 4 p35Fe for ki, ke, ks € Zo, p1,p2,p3 € Z.

Recall: N(a,b) is the number of non-zero digits in the base b expansion of a.

p
Theorem (Stewart). There is an effective absolute constant C' such that

logloga
N(a,2)+ N(a,3) > ———————— —
(0,2) + N(a,3) 2 loglogloga + C

)

for a € Z>y.

N

Digit expansion of a

le
¥ - L‘l e,
/ ‘//’/\
K AX X0 00 O% % -,
\47*?—77\‘\/’ -
(0310\

13



Lecture 6

a=p2k +e;.

We need pX¥e; < 2 where K = C'loglog, a (this is an upper bound for the exponent of max(p, g, 10)
in the proposition). Previously we have pe; < ok1(1=¢)

Alternative to heights of minimal polynomials (is better behaved under operations like addition):

- N
Definition 1.11 (Mahler measure). Let P € C[X]

P(X) =agX%+ ag_1 X+ + A
=ag(X —ay) - (X — aq)

Then we define

d
M(P) = |ag| - [ ] max(1, |ay)).

J=1

We could define the height of an algebraic number « as
H(a) = M(fo) ™7,

but instead we will define it in a different (but equivalent) way.

Consider two algebraic integers «, 3, and assume

[Qlar+ 4] : Q] = [Q(a) : Q] x [Q(B) : Q.

This means that the Galois-conjugates are o; + 3; where «; runs through the conjugates of o and g;
runs through the conjugates of 3.

Then
M (fass) = [ [ max(1, i + B)

i,J

< HQmaX(l, |a;|) max(1,|5;])

i,J

do
= odid2 (H max(1, |a,|)> HmaX(L 18il)

(3

dy

— o M (f,)% M (f5)"
Recall that we mentioned that we could define
H(a) = M(fa) 7.

Then would have

Similarly,

14



Proposition. Let P € C[X] of degree d. Then

27YH(P) < M(P) < (d+1)H(P).

Proof. For the upper bound:
1
log M (P) :/ log |P(e” ™) |dt.
0
Known as Jensen’s formula (enough to prove for P of degree 1).

Note that
[P(X)| < (d+1)H(P)

for all | X| = 1. This with Jensen’s formula gives the upper bound. For the lower bound:
P(X)=asX" 4+ + a1 X +ao.

Then

2= Z lag, |-~ - |ax, | -
————

{k‘l ..... k‘]‘}C{l ..... d} SM(f)/ladl

The number of terms is < 2¢. Hence |a;| < 2¢M (P).

Absolute Values

Let K be a number field. Then a function | e | : K — R is an absolute value if:

o |apl=l|af|B]
o la+ 8| <la|+|f| forall o, 8 € K

Example.
« Trivial absolute value: |a| =0 for all @ € K.
e Let 0 : K — C be an embedding. Then |a|, = |o(a)].

o Let P C Ok be a non-zero prime ideal lying above p € Z. (This means p € P).

Then we define ordp on K as follows: for a € Ok, ordp(«) is the largest m such that
P™ | aOk. For o, € Ok, ordp(a/B) = ordp(a) — ord,(5).

Let ep = ordp(p) (ramification index). Then we define

‘04|P =p ordp(a)/ep.

15



Lecture 7

Comment on the normalisation: for o € Q, we have |a|, = |&|s0, and |a|p = |-

The places of K are My comprises:

o all embeddings o : K — C such that o(K) € R
e one from each complex conjugate pairs from the rest

o all (non-zero) prime ideals

For v € Mk, | ® |, denotes the absolute value given above.
Infinite places: M : embeddings.
Finite places: M y: prime ideals.

For v € Mg, we define d,, as follows:

e if v is a real embedding, then d, = 1.
e if v is complex, then d, = 2.
e if v is a prime ideal, then d,, = e, - f,, where: [Ok /v : Z/pZ] = f, (where p is the rational prime

below v).

Comment:
dy, = [K : Q]
where p is the place of Q below v.

L/K extension of number fields, then w € My, lies above v € Mg; in notation w | v.

If both are embeddings and w|x = v or w|xg = T or both are finite and w lies over v as prime ideals,
ie. w|vOp.

Remark. >, d, =[K:Q], >, ,dv =[K:Q]

Proposition (Product formula). Let K be a number field. Then for all & € K # 0, we have

[T led = 1.

Proof. We compute N(aQk) in two ways.

N(OZOK) _ H N(’l})ord”(a) _ H pfv‘ordv(oz)7
vEMK ¢ VEMK ¢

16



where p is the rational prime lying below v.

Recall |a|, = p~ odv(@)/ev = p=ordu(a)fuo/dv g

N@Ok)= ] lely*.
vEMq, ¢
Also,
N(@Ok) =|N(@)| = [ lal.

VEMEK oo

Dividing the equations gives the desired result. O

Now we define .

TK:Q]

H(a) = < [T max(, |oz|v)> .
vEMK

We will also use h(a) = log H(«). We won’t be using that much, but we mention it mostly because it

is used in the literature.

H is known as “multiplicative height”, while h is known as “logarithmic / absolute / Weil height”.

Proposition 1.12. Let L/K be an extension of number fields. Let o € K. Then H(o) as
defined above is the same for K and L.

Proof. Claim 1: If w € My, v € Mg such that w | v then |af, = ||, for all a € K.
Claim 2: }_  duw = [L: K]d,.
Assuming these claims are true, then for o € K

l—ImaX(l7 |t )% = max(1, |ay|)FHId

wlv

Then

1
[L:Q]

dy
[[max(t,al)® | = max(L, |a, )@

wlv

Which implies the desired result.

Proof of Claim 1: Will show if v, w are embeddings then
|alw = [w(a)] = [v(a)] = |af,.

If w, v are prime ideals, then we need

ord,(a) ord,(a) '

Cw €y

17



Lecture 8

For this, note that for all ideals I C Ok, we have
ord,, (I - Or) = ordy,(v-Or) - ord,(I).
Use this for pOx and aOg in the role of I:
ey = ordy,(v-Op)e,
ord, (a) = ordy, (v - Of) - ord, ()

Proof of Claim 2: Omitted. O

Proposition. Let a € @;60' Then

H(a) = M(fa) ™72,

Remark. Recall 272H(f,) < H(a)? < (1 + d)H(fa)-

Proof. Enough to prove
lag® =[] max(1, [z],)*
vEMK, ¢

where K is a number field with o € K.
If K = Q(«), then this is immediate from the definitions.
For a polynomial P € K[X], we write |P|, for the maximum | e |, of all the coefficients of P.

A variant of Gauss’s lemma can be stated as follows: Let Q1,Q2 € K[X]. Then |Q1Q2], = |Q1]+|Q2]v
for v e Mg .

Observe that |fq|, = 1 (for all v € Mk r) because the coefficients are coprime rational integers. We
write fo = aq(X —a1) -+ (X — aq) (we take K to be the splitting field of f,). Gauss’s lemma gives

H lag|® - H Hmax Saglu))® = 1.

VEM ¢ vEKK, 5 j=1

Let o be an automorphism of K such that ca; = a for some fixed j. This permutes Mg ¢. That is,
Vv € My s, there exists ov € M s such that |05|,, = |5]v. So

H max(1, e, )% H max(1,| oa; |o0)%"
’L)GMKJ vEME, f v

= H max(1, |a|,)

vEMK

18



By the product formula:

[T laals =TI laaly® = laal~" .

’UGMKJ' ’UGMK,oc
So
=[Q(a):Q]
=~
d
I] max(1|af,)* = |agq|F@ 0.
vEMK ¢

Lemma. Let o € Q, and k € Z. Then

H(a") = H(a)*.

Proof. If k > 0, then this is immediate from the definition. So just need to consider k = —1:

H(a 1)d = H max(1, |af; 1)
vEMg

(d = deg ). We multiply this by

[T lal® =1.

vEM,

So
H( M= [] max(lal, 1)* = H(a)".
vEMy

O

Let P be a polynomial in possibly several variables, with complex coefficients. Then L£(P) is defined
to be the sum of the absolute values of all the coefficients. This is sometimes called the length of P.

s a
Proposition. Let k € Z>1, n1,...,n € Z>o. Let P,Q € Z[Xq,...,Xy] of degree < n; in X;.
Let ai,...,ar € Qxp. Then:

P(Oél,...,ak) . k Akj
. (Q(mak)> < max(L(P), £(Q)) - [ ] H(ay)".

j=1

In particular: H(af) < H(a)H(B) and H(a+ 8) < 2H(a)H ().

19



Proof. Let K be a number field containing all ;.

Q)

H max <1,
vEMK

H max(|Q(...)|u, |[P(...)]w)% from product formula for Q(. .

vEMK

Let first v € Mg y. Then

‘P(ala aak)|v < j I%laX ‘alu} |ak‘jk
1=0,...,
jk:Oj- Mk
k
= Hmax(l, laily?)
=1
For v € My -
‘P(Oq, . , |v < £
So

[K:Q] k
()] S max(ep) @) T T max(ijaid)

Q<> i=lveMxk

Then taking a [K : Q] root of both sides gives the desired inequality.

)

Lemma. Let o« € Q C C. Then:

H(a)fdega S |a| S H(Oé)dega.

This is sometimes known as “trivial bound” or “Liouville’s bound”.

Proof.
dega _ H max(1, |al,) do > o
vEMEK

Apply this for o~ !

a7 < H(a™)" = H(a)
o = H (o)™

20



Theorem (Siegel). Let o be a real algebraic irrational number. Then for all € > 0, there exists
¢ = c(a,e) > 0 such that

a_p‘ch— 2d—¢
q

for all p,q #0 € Z.
\ J

Lecture 9 We will spend the next 3-5 lectures proving this.

We will spend today’s lecture discussing an outline of the proof, discussing why certain parts are
necessary and also some intuition as to why one would expect this method to work.

1
q\/ﬁ«#a °

(1) Suppose to the contrary that there are infinitely many 2L, 22 . . such that ‘a — 2

q1’ g2’ "’ q; >

(2) Choose two among these appropriately, which I will denote Z’—i, ’;—Z.

(3) Construct a polynomial P € Z[X1, X5] that vanishes at («, ) to high order.

(4) Give a lower bound on P (p—l p—z).

q1’ q2
(5) Give an upper bound on P (p—l p—2).

q1’ q2

(6) Realise that they give a contradiction.

1 variable is not enough: let P(X) be of degree n. Then P may vanihs at « to order n/d. Then we

ha.\/e a 1()Wel“ bound ()f
’l ( ) ’ > 2!
q q

and we might hope for an upper bound like

To get a contradiction, we need ‘a — % < -, le. ‘a — %" < =

p1 P2 1
P T Z
(q1 Q2>‘ a1y’

where ny is the degree in X; and ns is the degree in ns.

J1 J2
P1 P2 4! P2
Pl—,—|= E P g (a,0) | ao—— oa——
(fh ‘I2> e )< ql) ( CI2)

Ji,J2

Lower bound

Upper bound:
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- 1 oI1tiz
where Pj17j2(X1,X2) = WWP<X1,X2) Note

J J2
p1 P2 1 1 oy , .
RS —— RS — < . = —_ 3 .
(a > (a 2 > = e e T O (=(V2d +€)(j1log 1 + j2log ¢;2))

1 2

Index of P at (81, 82) with respect to the weights wy, ws.

Ip(B1, B2; w1, ws) = min(jrwi + jowa, Pj, j,(61,B2) # 0).

Use wy = log q1, ws = log go. With this, we get the upper bound

‘P (ZZ)’ S exp(—(V2d +¢) - Ip(a, a)).

How big can Ip(«, «) be made? We look for P in the form

ni n2

P(X1,X5) =Y ) ai i, X1 X2

11=0125=0
The condition that P}, j,(a, ) = 0 is a linear equation for a;, ;, over Q[a].

By picking a basis of Q(«) over Q, this becomes a system of d linear equations. To find P such that
Ip(a,a) > I we need to solve:

12
2log ¢ - log qa

d-[{(j1,72) - j1logqr + jalog g2 < i}| ~

)

"j ’og)%'¢ {7/ 030,1 =L
I can choose n ng, I, and I want to do the following:
dr?
S
2loggiloggs ~
1

exp(—(V2d +)I) S

~ ny . no
1 42

22



(V2d +¢e)I 2 nylogq + nalog go

Vadte | I
2

I for some large I.
g qk

Take ng ~

Subtleties that still need to be considered:
o Siegel’s Lemma will be needed to make sure that the P;, j, are not too large.
pL P
. P ((T qu) £0.

o i L I T
P}, j, — coefficient of zPx}? iS @iy4jyi044s * (

X11+J1X%2+h in P.

i1 +j1) (iz +J2

i i ), where a;,4i, .+, is the coefficient of

Lecture 10  H(Pj, ;,) < 2™t H(P).
Thue: P(X,Y) = Ry (X) + Y Rao(X).
Let L be a linear form in K[X7,..., Xy]| where K is a number field.

For v € Mk: |L|, = max(|a;|,) where L = a1 X1 + -+ + anXy. Then define

1

H(L) = ( 11 |L|ﬁv>m.

vEMK
By the product formula, this is invariant under multiplication by an element o € K*:
laLl, = [alu|Z].,
SO

H(aL)= [] leLlf = H(IL) ] lalir = H(L).
vEMK vEMK

Lemma (Siegel’s lemma). Let K be a number field of degree D. Let M, N € Zs( such that
N > MD and let X € R>;. Let Ly,...,Ly € K[X1,...,Xy]| be linear forms such that
H(L;) < H. Then there exist z1,...,2x € Z (not all 0) such that Ly(z1,...,zn5) = 0 for
j=1,...,M and

Jas| < (NH) ™D

In particular, if N > M D, then the bound is NH.

There is a refinement of this lemma which is due to Bombieri and Vaaler.

[ Corollary. Let a be an algebraic number of degree D. Let wi,ws,d € Rsg, and let I € R+g. }
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Let ny,no € Z~¢. Suppose that

(1 +1)(n2+1)

|{(i1,i2) E ZZEO Dwy F lawg < I}| < (1 +5)D

Then there exists P # 0 € Z[X1, X»] of degree n; in X; such that Ip(a, o, w1, w2) > I and

H(P) < (4H(a))™ 2

where H(P) is the maximal absolute value of hte coefficients.

Proof. For (i1,i2) consider:

ni N2 ] _7
1 2 o L
R § § AW E Sl ST o PRk )
L11712 - (h) <i2>a’h,]2 «Q

j1=072=0

where a;, j, are variables of L Then

01,02
Lihig((ajl,jg)jl,jg) =0 = Pil,ig (a’a) =0

where
ni no

P = Z Z a’jl,jzX{ngz'

J1=072=0
Need to find (aj, j, ). such that L;, ;,((aj, ;,)) = 0 for all 41,4y with tyw; + dowy < 1.

Apply Siegel’s lemma:

N
N = 1 1 M< —.
(n1 +1)(n2 + 1), < a70D
Then
MD MD 51

< =
N-MD ~ (1+6MD—-MD
We need to estimate H(L;, ;,). For finite places v,

|Li17i2|v < Inax(l’ |a|v)"1+n2.

For infinite places:
|Liy inlo < 2™ - 2" max(1, |a,)™ T2

Then
H(Li, i,) < 2™ H(a)" "2 = H.

Then Siegel’s lemma gives the bound

[2m4"2 H (@)™ (0 + D(na + 1))
N———

<2nitn2
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Lecture 11

Proof of Siegel’s lemma for K = Q. We can assume that the coefficients of each L; are integers, and

that they are relatively prime. Then each coefficient is bounded by H. Take ¥ = L(N H) NiT DJ.

Consider (y1,...,yn) € {0,1,..., Y}V, Evaluating L; at all such (yi,...,yn) we have
max L;(y1,...,yn) —minL;(y1,...,yn) <Y - HN.

The number of possible values of L;(y1,...,yn) is <Y -H-N+1.

Claim: (YH -N+1)M < (Y +1)V.

Indeed:

Y = [(N : H)N?’MJ

M
—M

Y+1>(N-H)~
Y +D)N > (N- )M (v +1)M

The claim follows by
NHY +1 < NH(Y +1).

Note that the above line uses the fact that H > 1!

By the box principle, there exist (y1,...,yn) # (21,...,2n), with entries bounded by Y, such that
Li(yi,...,yn)=Lj(z1,...,2n) Vi=1,...,M. O

In the K = Q case, a key step is that for L € Z[X1,...,Xn] and H(L) < H, the points L(yi,...,yn)

are integers confined in an interval of length NHY (where y1,...,ynv =0,...,N).

In the general case, consider the map:

®: K >R C°=2RP

a = (0())veny o
The v-component of ®(L(y1,...,yn)) is confined in an interval (or box) of size NY - |L|,.

Let « = L(y1,...,yn) — (#1,...,2n) # 0. By the product formula,

II = II lei®™= I £

VEMK oo vEM[ ¢ vEME ¢

dy
o'
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Make sure ], I, < RHS of above.

Non-vanishing:

Proposition. For every ¢ > 0, there exists C' = C(e) such that the following holds. Let

ny,ns € Zg, and let %, Z—Z € Q. Suppose that
J©
exp(nl + n2) < q;lj/

for j = 1,2, and that loggs > C'logq;.
Let P # 0 € Z[X1, X»] of degree in n; in X; for j = 1,2 such that
U C
H(P) < g, /

for j =1,2. Then

1 2
Ip (127 %,log ¢, log CI2> < ée(n1logqr + nalogga).
1 2

Note: from now on, whenever we say % € Q, we also mean ged(p,q) = 1.
When we apply this we will have nq log ¢ ~ nsloggs.

Without the asymmetry assumption (log g2 > C'log ¢ ), we have the counterexample: P = (X1 —X3)",

with 2L = 22,
q1 q2

Alternatively: P = (R(X1) —X2Q(X1))"™ (for R, Q some small degree polynomials) for any £+, 22 such

q1’ q2
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that

Lemma. Let F, FV F®) € Z[X;, X5], and let 4,42 € Z>0. Let a1, as € R and wy, wy € Rsg.
Then the following holds:

If, ., (o1, a2) > Ip(on, az) — 1wy — dgws
>

Ivoy pe (a1, o) j:i1nz Ipo) (a1, o)

Iroype = Ipo) (0n,a2) + Ipe (ag, az)

Baby case: P(X1,X5) = F(X1)G(Xz2) for some F,G polynomials.
In this case if Ip > £(nq1 log g1 + nelog ga) then either I'p > enjlogqy or Ig > englog ¢o.
If F' vanishes at ’(;—i to order m for some m, then

(@1 X1 —p)™ | F.

The leading coefficient of Fis divisible by ¢7*. In particular, H(F) > ¢*. Then H(F) > ¢{"* or
H(G) > ¢5™.

Hence H(P) > min(g;™, ¢5"*), which contradicts the assumptions.
In general, we can always write

P(X1,X2) = FO(X)GW(X) + -+ FO(X1)GM (X)
with A < ns.

Consider h = 2.

P(X1,X5) = FO(X))- GV (Xy) + FO(X)G?(Xy)

0 0 0
. p=FO. o)L @, T
0Xs Oxa * 0Xo ?
Lecture 12
0 0 0 0
L a@p_a L p_p) [ _Z @ __Z oM. q®
0Xo 0Xo 0Xs 0Xs

We will later have to worry about whether the resulting polynomial is 0.

27



For any h:

P G2 GM)
) ) a_i(h
TXQP e G2 e G
hfll h—l: - h—lz
a)a(;"—“ P aggh—” a®@ ... #Gw
JaYelty G2 e Gh)
) ) a_i(h
FlmG(l) a7){2@*(2) 87)(2@( )
h*’l h*l: h h.fl:
F 8;?%1) am 8%%1) a®@ ... #G(h)
[eley G2 e Gh)
) ) )
aing(l) 67)(20(2) .. szg(h)
:Fl . . .
h—l' h—l' h—l.
e G o GO e G
The degree increases h-fold, but not the index.
Py P - Pop—
Py1o0 Py—1q -+ Ph_ip—1
FO  p@ .. M) W W
1
FOOR® . p0] 60 6 G,
B R R B A R 7,
: : ) lellOlre e G
1 2 h 1 h—1
R R ED

o 1 _9itd o _ 1.9
vvhelreP”—Tj!WP7 Fi=55+5F.

s ™
Lemma. Let F) F®)  F() be Q-linearly independent polynomials in Z[X]. Then

O gp@ ()
F1(1) F1(2) Fl(h)

.1 .2 . Zh
EYOR2 - R

(Wronskian)

Proof of Proposition assuming the lemma. Suppose to the contrary that the proposition does not hold

for some P, BL 22 Write P = FOGM ...+ F(h)G™ such that h is minimal. Then h < ny + 1 and
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the F ... F®) and GO, ..., G™M are Q-linearly independent. Then consider

Poo -+ Pop—
p_| - .
P10 Pr_1n-1
and
Foo -+ Fon- Goo -+ Gop-
F=| : g=| :
Fr_10 -+ Fp_1p-1 Gh-10 -+ Gpo1n-1

Then P(X1, X5) = F(X1)G(X2) # 0 by the above Lemma.
Note deng P < hnj, deg F < nq, degG < ny. Also

H(P) < L (Dt ) @utEp)t
—_— —_———

ways to multiply entries 1,5nomials in the entries  coefficients of entries

< 2(n1+n2)h2(n1+n2)hq;mj/0

H(F) < (8"+m2q;7/%)

hny/C
(qj 1/ )h

IN

H(G) < (8"+72g52/9)

hno /C
(qj 2/ )h

IN

Ip,, > Ip —ilogqs — jloggo. If j < % +1, log q1 < 15 log g2. By the indirect assumption

Ip > e(n1log g1 + nalogga),
€ 5
IPL] > 57712 log q2 + 5111 logql'

Lecture 13

2

3

Ip <pl7 pz) 2 5gh(nilog gy + naloggz).
q1 g2 20

If F vanishes to order m at %, then ¢} divides the leading coefficient of F'. In particular, ¢i* < H(F).

Then
10An4 log g1

D1
Ir (21 <log H(F) <
P (ql, ogq1) <logH(F) < C
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IOh’FLQ log q2

D2
Io | =1 <logH <
el <q27 oqu> <log H(G) < C

If C is sufficiently large in terms of ¢, then

Ip (pl,m> <Ir (pl> + g (’)2) :
q1 g2 q1 q2

A contradiction. O

Now we prove the lemma from earlier:

Lemma. Let F(M, FR) F(® be Q-linearly independent polynomials in Z[X]. Then
QO @ ()
O EO
. 20,
O @ . n)
Fyy Flg—l Flg—l
(Wronskian)
N J

Proof. The statement does not change if we replace F9) by aF® + bFU) for some a,b € Q and
i €{1,...,h} provided b # 0.

Then we may assume: F() = X 4 lower order terms and the m; are distinct.

We will prove that:

X e X
(qu)Xml—l . ('”;h,)th—l
. . . £ 0.
. —h+1 ' h . ,—h+1
(hT1)Xm1 (;’T_l)Xm’
Then this is the leading term of th Wronskian, so this will prove the claim. The determinant is equal
to: " "
(0" ("5")
: . oo xM
(:111) o (i;nfh1)
Supose to the contrary that a non-trivial linear combination of the rows is (0,0,...,0). Now the i-th
row is a polynomial of degree i — levaluated at mq,...,my. Then the linear combination of the rows
is a non-zero polynomial of degree < h — 1 evaluated at mq, ..., mp. O

[ Theorem. Let a be an irrational, real algebraic number of degree d > 2. Then for all € > 0, J
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there exists C = C(a, €) such that

o — p‘ > Q= =E,

for all § € Q.

Proof. Suppose to the contrary that there are infinitely many ZE) with

ap‘<q
q

—V2d—e¢

Then fix €9 > 0 sufficiently small in terms of «, e and let C' be the constant when the proposition is
applied with ¢ in place of ¢.

Now let 22, P2 he guch that
q1’ q2

b1
a— 2

q1

<q 2d—e

' b2
, |00 — —
q2

and
logq1>C-€51 loggs > Clogq;.

We use Siegel’s lemma to construct P(X7, X») that vanishes at («, ) to high order.
We choose n1,ny € Z such that

nylog g1 < nologge < nyloggr +1loggs.
We want a polynomial P such that

n1 log g1 + nzlog g2

V2d+ 55

Ip(Oé, a) >

For this we need to estimate

(I +log g1 + log g2)?
2log g1 log g2
- (1+6)d

[{(i1,i2) € Z%¢ i1 logqr +izlog gz < I} <
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Lecture 14

IJ""DM'AC@i
i

los j«l
—
////{
7]
f T )
1*]03 Olﬁ+\03ql
\005 0\//»
This is because
; 2nilogqr 2nglogqa
V2d V2d
SO
T2 2n1 - 2n2  mang
2logqiloggs  2-2d  d

So we find P € Z[X1, X,] such that Ip(a, o;log g1,1og g2) > I and H)(P) < (4H())?  (m+n2) We

need:

H(P),exp(ny +ns) < q;”/c ~ e

for j = 1,2 and log qa > C'log ¢;. This will be fine if (4H(04))5_1 < ¢f. This is fine if &y is sufficiently
small with respect to « and 4.

Then Ip (5—1, 5—3) < eg(n1logqr + naloggs). Then there exists P a partial derivative of P such that

H(P) < (8H(a))* ("),

ny log g1 + nqlogqo

V2d+§

In(a,a) > 1 —eg(nylogqr +nalogga) >
if g¢ is sufficiently small.

P (p—l p—"‘) # 0. Then

a1’ q2

~ (p1 D2 1
Pl— —||> .
‘ <Q1 %)’ a1 q5”
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Taylor’s formula: , .
5 (PL D2 5 r\" ( p2>”

Pl—,—|= P i (a,0) | — = oa——

<Q1 tb) “2;2 via( ) ( Q> q2

If 41,2 are such that P ;,(a, ) # 0, then

nylog g1 + nalog go

V2d+ E

i1logqr + iz2logge >

hence
“ 2 1 1
a—l2 ‘ _P < exp —(\/ﬁ—i-s)-nl 0g¢1 + N2 08 d2
Q1 q2 V2d+ £

_ N2d+e
ni n2 V2d+ £
< (g1 43”) ;

The exponent is smaller than —1!

Now estimate the coefficients:

—1

Py iy, 0) < (ng +1)(ng + 1)(8H(a))® ™F72) - max(1, |af)™ 7
< Oy (a,g)mrtm2

and
5 (P1 P2 _ V2d+te
P <7 ) < (ny + 1) (ng + 1)Ch (o, )™ - (g1 ql2)” V24+5
q1 q2
_ \/ﬁ«#s
< (2C1(a, )" - (g gp?) VAR
<(q1'g5*)~"
Contradiction. _

Theorem (Gelfond-Schneider). Let A;, A2 be logarithms of non-zero algebraic numbers. Then
A1, Ao are linearly independent over Q if and only if they are linearly independent over Q.

We will prove this by assuming f\‘—i € Q\ Q, and then showing that a particular determinant is both
equal to zero and not equal to zero, hence getting a contradiction.

Before doing this, we will discuss how the previous proof could have been instead been phrased using
determinants.

We considered some functions 1, ..., ¢ which were some enumeration of X7 X22. Then we used
Siegel’s lemma to find aq,...,ar such that D = ajp1 + -+ + appr vanishes at u; = (o, @) to some
order. (Note that P also vanishes at all Galois-conjugates of (a,a): ug,...,uq). Then we find an
argument to show that P also vanishes at ug11 = %, Z—z to some order.
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Lecture 15

This means that for ¢ = 1,..., L there exists k(i) € {1,...,d + 1} and some partial differentiation
operator 0; such that aiP(uk(i)) = 0. We also showed that P with so much vanishing cannot exist.

Let:
orpr(uray) - Orpr(uray)
M = : :
er(upwy) - Onpr(urwry)
Then P having all that vanishing is equivalent to
(al,...,aL)M = (0,,0)

Now the existence of P is equivalent to det M = 0.

Let A, A2 € Ry, and oy = eM g =eM e Q. Let = % € Q\ Q. So we assumed that Gelfond-
Schneider is false. We aim for a contradiction.

Let Tgy, 17, S e Z>0 with
L:=(To+1)(2T; +1) = (25 + 1)

Consider the “monomials”
X7 exp(th1 X)

fort=0,...,Ty, t = =T1,...,T1 and the points s; + [so for s1,82 = —s,...,s.

Notation. [—] r; means a matrix with rows indexed by 7,t and columns indexed by s1, s5.
S$1,82

Let
A = det[(s1 + Bs2)” - exp(tA1(s1 + ,382))]87,2

= det[(s1 + Bs2)" a1 05"] o

Steps:

(1) Give an analytic upper bound on A
(2) Give an arithmetic lower bound on A

(3) “zero estimate” = A #0.

Steps (1) and (2) will be done in such a way that together they will give A = 0. Then this will
contradict (3).

We will alternate between viewing (s1 + 8s2)7 - exp(tA1(s1 + 8s2)) as a function of a single variable

(function of s; + Bs2) and thinking of it as a function of two variables (function of s; and s2).

Upper bound
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Proposition. For n € Z~, there exists ¢ = ¢(n) > 0 such that the following holds:
Let L € Z~o, E € Roy. Let f1,..., fr : C* — C be analytic functions (here, analytic means

convergent power series on C™). Let &1,...,&, € C™. Let r = maxs—1,... 1 |&, ;|- Then
g=1l000 n

) L
det[fe(€x))e=1,.... < E~L" . LL. 11111z
L t=1

s=1,...

Notation. |f|r = max|,, |, |e,|<r |f(®1,...,70)].

Corollary. With A, Ty, T1,S, L as above, there exists ¢,C' > 0 depending only on S, z, such
that for all £ € Rx,:

|A| < exp(—cL?log E + CL - Tylog(ES) + CLT1ES).

Proof. We take n =1 and some FE > e. We have |s; + 8s2| < Cp - S with Cy = Cy().
|27 exp(tA12)| < exp(C1Tp - log ES + C1TLES)

for |Z| <FE- CO . S, with C7 = Cl(ﬂa)\l)'

One possible choice of the parameters: £ =e. S ~ L2, Ty ~ L*=¢, Ty ~ L¢. In this case:
|A| = exp(—cL?).

(for large L).

Lemma (Schwart’s Lemma). Let f be a holomorphic function on Dg the disc of radius R with
a zero of order k£ at 0. Then: for all z € Dg:

|Z|K |flr

re < B

Proof. The maximum modulus principle for ’;(—;)

[Proof of Proposition. | We apply Schwart’s Lemma, for
£(2) = detlfu( &)

and R = E. Note: |F|g < L'-TI—, | /| zr-
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Lecture 16

So the proposition follows if we show that F' vanishes to order cL' % at 0. We prove this. Enough to
do it when each f; is of the form 27" --- 2% for some aq,...,a, € Z depending on ¢.

This is because all f;s are infinite linear combinations of such f;s, and hence the determinant can
be written as an infinite combination of special determinants. Furthermore we may assume that the
(a1,...,ay) are distinct for different ts.

Observe: det[fi(z - &) = 2298t - det[f;(&,)]: if each f; is of the special form.

1
The number of monomials with degree < d is at most d". We take d = {(%) "J Then at least half of
the fis have degree > d. So > deg f; > (%) cd>c- LYe. 0

Proposition (1). Let S = (Tp + 1)1 be non-negative integers. Let wy,...,wr, and &, ..., &g
be two sets of distinct real numbers.
Then

det[£5 eXp(wtés)]Tét # 0,

with: 7=0,...,Tp, t=1,...,T1,s=0,...,5.

alternant / interpolation determinant

- N
Proposition (2). Let T € Z>1, let wy, ..., wr be distinct real numbers. Let Py, ..., Pr € R[X]
be non-zero. Then the function

F(z) = Pi(x)e"'® + -+ 4 Pr(x)e“™”

has at most deg P; + - - - + deg Pr + T — 1 real zeroes counting multiplicities.

Proposition (2) = Proposition (1). Suppose to the contrary that det = 0. Then there exists a,; €

R not all 0 such that
Z arx” exp(wpx)

vanishes for all x = &,...,£s. This is a function of the type in Proposition (2). Each polynomil is
of degree < Ty, and there are 77 many of them, so there can be no more than Ty, - 77 +T7 — 1 < S
ZETOES. O

Lemma 1.13. Let f be a C function on R with N real zeroes. Then f’ has at least N — 1
Zeroes.

Corollary of Rolle’s Theorem.
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Proof of Proposition (2). By induction on N :=deg Py +---+degPr+7T —1. f N=0,then T'=1
and deg P; = 0. So F(x) = a - exp(wyz) for some a # 0. This indeed has no zeroes.

Suppose N > 0 and the claim holds for N — 1.

We assume as we may that wy = 0 (if not, then replace w; by w; — w1, which has the effect of replacing
F by F-e %r®),

Then by the lemma, F' has at most one more zero than

F'= Pi(2) + (Py(x) + Pa(x)wy,)e"™ +- - -
——

deg P; —1 deg P>

By the induction hypothesis, F’ has at most N — 1 zeroes, so F' has at most N zeroes. O

Now we return to proving Gelfond-Schneider.

Let 21,22 € Rx—¢ such that a; = edeQforj=1,2.

We aim for a contradiction. We have integers L, Ty, T1,S such that
L=(To+1)2T +1) = (2S + 1)

Let
A = det[(s1 + Bs2)" exp(Mt(s1 + Bs2))] ¢ -

51,82
Last time:
log|A| < —cL?log E + CLTylog ES + CLTVES

where E € R, arbitrary.

Apply Proposition (1) with £s = (s1 + 8s2) with some enumeration of s1,s2 and w; = A;¢t. Then
A #£0.

Recall:
A = det[(sl —+ BSQ)TOZ§SICYES2] Tt -

81,52

Then
A= P(ﬂ7a1;a2)

for some P € Z[X,Y, Z]. So:
H(A) < L(P) - H(B)™" - H(on) > " H(az) ™

using
L(Py, Py) < L(P)L(Py)

c(Sp) =Y em)

and
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Lecture 17

we get
L(P) < L!-(28)TL.

Liouville bound:
log|A| > —C(log L! + Ty L log S).

Take: £ = 10.
Then we have a contradiction if
—cL? 4+ CLTylog S + CLTS < —C(L -log L + TyLlog S + T, LS).

I want:
L* > C(TyLlog S + LT, S).

Take: S ~ L3, Ty ~ L'=¢, Ty ~ LF.

e ~
Theorem (Nesterenko). Let Ty, 71, N,M € Zsg. Let ¥;,%y C C? such that |3] = N,
|¥2] = M, and the exponentials of the second coordinates of ¥; and the first coordinates of 3
are distinct. Let P € C[X,Y] of degree < T in X, and < T in Y. Suppose that P(X,exp(y))
vanishes on X1 + ¥o. Then

NSTl or MSTo(Tl—i-l)

Proof. If P(X,Y) = P(X,Y)-Y, then P(X,exp(y)) vanishes at exactly the same places as P(X, exp(y)).
So we may assume Y { P(X,Y). Suppose that N > Ty, and write 1 = {(£1,m1), ..., (&n,nn)}. Then
P(&+X, exp(n;j+y)) vanishes on ¥ forall j = 1,..., N. Wewrite P(X,Y) = Ry(X)Y 1+ - -+ R YFx
with 0 =k < ko <+ < kg <Tj.

Then
P(& + X, exp(n; +y)) = Ra(& + X) - exp(i)™ - exp(y)™ + -+
Write
Qij(X) = Ri(& + X) exp(n;)"'.
Then

P(& + X, exp(n; +y)) = Z Qi (X)(exp(y))*.

I look for polynomials Ay, ..., A; € C[X] such that

K
> A(X)P(& + X, exp(n; +y)) = B(X) € C[X] (*)

Jj=1

such that deg B < To(T} + 1), and then since B vanishes at the first coordinates of Yo, M < To(Ty +1)
will follow. O
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Lemma. Let Q;; € C[X] fori,j =1,..., K for some K € Z~. Then there exists Ay, ..

C[X] such that

0 otherwise

S A4iQu = {det[Qm‘] ifj=0
i&Jij =

LA €

Proof. Let [Qij] be the adjugate of [Q;;]. Then
[Qis] - [Qj] = det[Q] - 1d.
Let Aq,..., A be the first row of [Qm]

Qu(X) - Qu(X)\ [exp(y)” P(& + X, exp(ni +y))

Qr(X) - Qur(X)/ \exp(y)™ P(&k + X, exp(ni +y))
Premultiply this by the row vector (A;(X),..., Ax(X)). We get (%) with B = det[Q;;.

deg B <ToK <Tp(T1 +1).

We need to make sure that B # 0

The leading term of @Q);; is a; - exp(nj)’“ - Xdeg Bi wwhere a; is the leading coefficient of R;.
To show B # 0, we will consider the leading term of B:

det[a; exp(;)* X8 1], = det[exp(n;)* ]y X =55 [ [ ai.

Lemma. Let K € Z>1, wnelet 0 =k; < --- < kg € Z. Let A C C such that |{exp(n)

A}| > k. Then there exists a choice of 71, ...,nx € A such that

det[exp(n;)"] # 0.

e

Proof. By induction on K. K =1 is true.

Suppose K > 1, and the claim holds for K — 1. Consider the determinant:

exp(m)f -+ exp(ng )t
: ' = D(2)
exp(ng—1)™ exp(njX
Zkl P ZkK

which has the property that the upper left (K — 1) x (K — 1) minor is # 0.
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Now D is a polynomial which is # 0 of degree ki, so it has at most kx many 0s. Choose nx such
that exp(ng) is not one of them. O

Lecture 18

Theorem. Let d > 3. Let F(X,Y) € Z[X, Y] be a homogeneous polynomial of degree d without
repeated factors. Let G(X,Y) € Z[X,Y] be of degree < d — 1. Assume F — G is irreducible.
Then

F(X,Y)=G(X,Y) XYeZ

has at most finitely many solutions.
\ J

Schinzel proved this only assuming that F # aQ" for some irreducible @ of degree < 2. He used
Siegel’s theorem on integral points. If an algebraic curve has infinitely many points, then it has genus
D and at most 2 points at infinity. Our proof is based on an argument of Corvaja and Zannier for
proving Siegel’s theorem.

Subspace theorem: Let V be a vector space of dimension n over Q. Let ego)’ R e%o) and eq,...,e,

be two bases of V. Then for all € > 0, there exists a finite number of elements fi,..., f;, € V such
that all ¢ € V* that solves:

n

[T letenl < Hg(el), ... (e~ (+)
i=1
with w(ego)) €Zforalli=1,...,n, ¢ satisfies ¢(f;) = 0 for some j € {1,...,n}.
Ja; j € Q such that
€e; = Z Otij6_§»0)
J
and L; = o Xy + -+ + i X, @ satisfies (x) if and only if

(@1, ) = (), ... p(e®)) e Z"
satisfies

(o)
H|Li(x1,...,xn)| < H(xy1,...,25)"°.
i=1

Let F, G be as in the theorem, and write P = F — G.
We assume that Y 1 F.
Then there exists a, ..., aq € Q distinct such that
FX,)Y)=(X-a1Y) - (X — agY).
Write T' for the set of (z,y) € C? with P(x,y) = 0. Then for (z,y) € I' we have

F(z,y) < C(|a] + ly)* .
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By a similar argument to the lemma for Thue’s equation, for all £ > 0 there exists R = R(P,¢) such
that (z,y) € T with |z| + |y| > R, then

z _
Y

Oéj’ < ¢ for some j.

We pick a small € > 0, in particular |a; — a;| > 2¢ for i # j. We define

<ef

Fo={(z,y) €T': |z[ +|y| < R}

T
— —

r, = {<m,y> ET:|o| + 1yl > R,

forj=1,...,d.

'y is bounded so only has finitely many integer points. We want to show this also for I'1, ..., I';. Write
I = PQ[X, Y] for the ideal generated by P. Take some D € Z>; and large enough. Write Q[X, Y]
for polynomials of degree < D. We will apply the subspace theorem in the vector space

V =Q[X, Y|P /(InQ[,Y]P).
Elements f € V can be evaluated on I'.

In particular, for (x,y) € I, the map f — f(z,y) is an element of V*. Reference basis: the monomials

XFkY™ for k4+m < D span V. Pick a linearly independent family for ego), e e%o), where n = dim V.

If (,y) € T NZ2, then 61(0) (z,y) € Z. Also,
H(e{ (@,y), ...l (x,)) < Cly|".

We need to find some /;’s that decay on a fixed I';.

41



Lecture 19

For j = 1,...,d we introduce a symbol p; and call these the “points of I' at infinity”. We define for
fev:
ordy, (f) =sup{m € Z: f(x,y) - y™ is bounded on I';}.

Note ord,, (f) > —D.

- N
Lemma. Let f € V and let j € {1,...,d}. If ord,, (f) < oo, then the limit

lim  f(z,y)y
(z,y)€L,|y| =00

exists and # 0. In addition, we have

lim (X-aY)Y l=qa;-a

(z,y) €L, |y|—o0

for all a € Q.
. J

Can be proved that ord,, (f) = oo if and only if f = 0.

Z is a local uniformiser at p; = (, 1,0).

Proof. Let j = 1, and by taking the substitution X — a1 Y +— X, we may assume a; = 0.

First, we show X is bounded on I'y. To this end:

G(X,Y)

X = X —aaY) (X —agV)

Note
a(X — YY) (X —agY) >cyd!

on I', with some ¢ = ¢(P) > 0. We may write P =0 as:
aXY4 4 py a4 P(X,Y)
(}5 of degree < d —2in Y). a is not the same as in the factorisation of F' and a # 0, but b may be 0.

This gives:
—b
X=—+Y1.QX Y. (%)
a N————
bounded

For some polynomial Q). Then lim X = %b onT.
Proving the first claim, suppose we can write
F(X,Y) = Ri(X)Y" + Ro(X)YF 1 ... (%)

Here, negative exponents of Y are allowed, but the sum must be finite. You can always do this with
k=D if Ry (—2) #0. Then f(X,Y) Y% - R(—2) # 0 and ord,, (f) = —k and the claim holds.
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If Ry (—2) =0, then use (**) to write (+*) with k replaced by k — 1.

Iterate this. O

Lemma. For each j =1,...,d, there is a basis l1,...,l, (n =dim V') of V such that

ordy, (I;) < =D +i—1.

Proof. By induction, we show that there I1,...,l;_1 and V; C V such that

V=Qb,& - &QL_18V,
ord;(lx) < —D+k—1 fork=1,...,i—1
ordy, (f) < =D +i for feV;

1 =1 1is trivial: V = V.

So suppose i > 1 and the claim holds for i — 1. We define: [;_1 to be an element in V;_; of minimal
order at p;. Let V; = {f € Vi_1 : ordy, (f) > ordy, (l;-1)}-

Just need to show: V;_y =1;_1Q @ V;. To this end, let g € V;_1. Write m = ord,, (I;—1). Then

limg- V"™ =:b < oc.
Ly

b
f=9- mliil.
Then
1%1]11 fYym=o0
so by the previous lemma, ord,, f > m. So f € V;. O

For this to be useful, we need n to be large. (We need n > 2D + 2).

s ~N
Lemma.
dimV >dD —d(d —1).
N
e N

Remark. Thinking about I' as a projective curve, V is the space of rational functions with
poles of order at most D at each point at co. By Riemann-Roch: dimV = dD — g+ 1, provided
D is large enough.

Proof. Let R(X,Y) =][(X — oY) (= M) The point is that the polynomials

R(X,Y)

—.vVieV
X _av @ €

le(Xa Y) =
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Lecture 20

are linearly independent in V. j=1,...,d,l=1,...,D —d+ 1. Suppose Q = ijl Bj1Q;; for some
Bji € Q not all 0.

Want to show @ # 0. To that end, let 8;/ v # 0 such that !’ is maximal with this property.

We can show that: )
lim Q(X,Y) - y-l-dtl — g, ., 11 (o — o).
’ i={1 AP\ (5}
Uses the first lemma today. O

Lemma. Let f, P € Z[X, Y] without common factors in Z[X,Y]. Then the system of equations
f(X,Y) = P(X,Y) = 0 has only finitely many solutions.

Proof. Z|X,Y| = Z|X][Y] (poynomials in Y with coefficients in Z[X]). f, P have no common factors
in Z[X][Y]. Then Gauss’s lemma gives us that they have no common factors in Q(X)[Y]. This is
because Z[X] is a UFD and Q(X) is its quotient field.

Since Q(X)[Y] is a Euclidean domain, there exists F,G € Q(X) such that
F-P+G-f=1
Multiply by the common denominator D of F, G, and we get
F-P+G-f=DX)

for some F,G € Z[X]. Hence the common solutions of f = P = 0 has finitely many X-coordinates.
Then swap X and Y. O

Theorem. Let F € Z[X,Y] homogeneous of degree d, without repeated factors. Let G €
Z]X,Y] of degree < d. Assume F' — G is irreducible in Z[X,Y]. Then there are at most finitely
many solutions of F(X,Y) = G(X,Y) with X,Y € Z.

FGY) = (X = ay)e (X = agy). T = ToUTiu- Ul P = F -G I = P QX,Y].
V= Q[X Y|P/ INQ[X,Y]P). ordy, (f) =sup(t € Z: f(X,Y)-Y" bounded on I'j). n =dimV.

Vj3l,...,l, € V a basis such that ord,,; (l;) > =D +i—1. n=dimV > dD —d(d - 1).

Subspace Theorem: Let V be a vector space of dimension n over Q. Let l1,. .., lgo)’ e ZS,O) eV
be two bases. Ve > 0 there exists f1,..., fmn € Vo such that Vo € V* that satisfies

n

[T1e) < He@™), ..., o0@) =
i=1 N—— N——
cZ €7

then ¢(f;) =0 for some j =1,...,m
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Proof of Schinzel’s Theorem. We show that Z*NT; is finite for any j = 1,...,d. Let [y,

a basis with ord(l;) > —D + 4 — 1. Then

[[Ix. )< y=-edn® on T
=1
< C - Y—D—l

if n > 2D 4 2. We set D to be large enough so that this holds.
(0)

Recall the reference basis { ; are suitable monomials of degree < D, so

19X, 7)< cYP.
Then for z,y € Z> N I';, we have:

HO (2,y),... 1O (z,y)) < C-|Y|P.

(2

Hence
n

[Tk ) < HE (2,y),..)7!

i=1

provided y is still large.

By the subspace theorem, f;(z,y) =0 for some i =1,...,m.

., €V be

To apply the lemma, we need f; € Z[X,Y]. This can be assumed: indeed, multiplying f; by an element
of Q, we can make the leading coefficient to be in Z, and all other coefficients will be algebraic integers.

Then replace f; by the sum of its Galois conjugates. O
e ™
Theorem. For q € Z~ with ged(g,6) = 1, we write ord(q) for the order of the multiplicative

group generated by 2,3 in Z/qZ.
Then:
ord(q)
im =
3% {log )2
N J
- N
Remark. 2"3™ for n < %logZ q, m< %log3 q. Hence
1 1
ord(q) > ( 5logyq ) | 5logsq | -
2 2
e ™
Theorem (Corvaja, Zannier; Herndndez, Luca). Write S = {2"3™ : n,m € Z>¢}. Then for all
€ > 0, there are only finitely many pairs of multiplicatively independent a,b € S such that
ged(a — 1,0 — 1) > max(a, b)°.
N J
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Lecture 21

a, b are multiplicatively independent if there does not exist n,m € Z such that a™ = b"™.

Fact: there exist infinitely many n such that

c/loglogn

ged(2” —1,3" — 1) > 3"

s 2
Theorem (1). If 2,31 ¢, then
d
T (Q)Q — 00.
(log q)
J
e N
Theorem (2). For all € > 0, there are only finitely many pairs of multiplicatively independent
a,b € S such that
ged(a — 1,6 — 1) > max(a, b)°.
N J

Proof of Theorem 1 using Theorem 2. Let
A={(nk)eZ?:2"-2" = (mod ¢)}.
This is a subgroup of Z?, and |Z?/A = ord(q) The volume R?/A is ord(q).

Our aim is to find (ny, k1), (n2, k2) € ANZ2, linearly idnependent and ny, k1, n2, k2 < Cord(q)/logg,
where C' is absolute. B

If we can do this, then: ¢ | ged(2™12%1 —2m23%2 — 1). By Theorem (2), since 2"13%1 — 1 and 2"23k2 — 1
are multiplicatively independent, we would get
q < max(2™ 3k1 gn23k2)e
< exp(Cord(q)/log q)°

Taking log:

logg < C -eord(q)/logq
ord(q) > C~'-e7'. (logq)?

provided g is sufficiently large in terms of e.

Now to the proof of the above stated aim: Let (74, 12:1), (7o, ks € A that generate A and such that their
angle is as close to § as possible.

Then this angle is between % and %’r:
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e/ 7 € /\

The area of the parallelogram spanned by (71, k1) and (7, k) is at least

%nm121>||2H<ﬁ2,z%2>||2 < ord(q).

Minkowski’s second theorem in the geometry of numbers.

We know that ¢ | 21711 3kl — 1 or g | 21mal — 31kl Then: either |721] or |k1| has to be > 1logs(g). In
particular: ||(721, k1)||2 > clog g (for some absolute constant c).

Then |[(7, k1)||2, || (72, k2)||2 < c%ald)

Togq - O
e N
Proposition 1.14. Let L € Q[X4,...,X,] be a linear form. Then there exists C' = C(L) such

that any solution z1,...,z, € S of L(x1,...,z,) = 0 satisfies
s = s|ssl 5 = i e = @l < © (*)
for some i # j € {1,...,n}.
- N
Remark. For x € Z such that z = 2"3Fy with n, k € Z>p, 2,31y, then
|%]oo|]2|]s = [yl-
N J
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Lecture 22

Note that (x) is invariant under multiplication by elements of S.

Theorem. Let V be a vector space of dimension n over Q. Let S C Mg be finite with oo € S.
For each v € S, let Agv), . A be a basis of V*. Furthermore, let AgO)7 .., A9 be another

basis. Fix an extension of each | e |, from Q to Q.
Then for all € > 0, there are finitely many 1, ..., @, € V* such that all solutions x € V of

I1 H A (@), < HAO (2),..., A (2))~

veS j=1

with Ago)(x), ., AD () € Z satisty p;(z) =0 for some i =1,...,n.

Proof of Proposition. By induction on n. Suppose n = 2. As we observed the conclusion, is invariant
under dividing z1, 22 by the same element of S. Now ged(x1,z2) € S. So it is enough to prove for
solutions with ged(xy,z2) = 1.

Let L(X3, X5) = aX; + bX5. Then axy + bxe = 0 with ged(xy,z2) = 1 implies 2 | b and 25 | a.
So there are finitely many possibilities for =1, x5 in terms of L. Pick C' that works for all.

(to be continued). 0

“generalised S-unit equations”.

Let K be a number field: O = {o € K : |z|, < lforallve Mg s}. Let S € Mg be a finite
set containing Mk oot Ok,s = {z € K : |z, < 1forall v ¢ S} (“S-integers”). O , units in Ok
(“S-units”).

Unit eqution « + y = 1 with x, y units.

Proof (continued). Induction on d. d = 2 was checked before.

Suppose d > 2, and the claims hold for d — 1. We make some simplifying assumptions to be specified
later. We apply the subspace theorem on Q¢! = V. The reference basis is A;O) =X;,j=1,...,d-1.
As a first approximation, we try Agv) = X for all j,v. Let S = {c0,2,3}. Let x = (x1,...,24) be a
solution of L(x1,...,xq) = 0. Then

d—1
[T ITIAY @) =1.

veES j=1
We can replace Agw) by
a aq—
71X1+...+ d 1Xd_1,
(07% Qaq
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where L = a1 X7 + -+ - + aqgX 4. Then we replace |z1]y by |2n|w. We do this for some choice w.

Now back to the simplifying assumptions: We assume that |z|s is maximal for j = n. Then

1
|Tn|2|Tnl3 = |2n|3t. So let w € {2,3} such that |2,]w < |Zn]c>. We may also assume |z1], = 1. For
this, we may need to divide = by the common divisor, and rearrange the indices.

For these augmented Ag-v)’s7 we get

d—1
[T I @)l < frals? < BAL (@), AL, ()%,

veS j=1
So the subspace theorem applies with ¢ = % So x1,...,xq—1 satisfies one of finitely many linear
equations. Apply the induction hypothesis for each of them. O

Theorem 1.15. For all ¢ > 0, there exist finitely many multiplicatively independent pairs
a,b € S such that
ged(a — 1,6 — 1) > max(a, b)°.

Proof. Fix some € > 0. Let a,b € § multiplicatively independent and such that
d=ged(a—1,b—1) > max(a,b)®.

Our goal is to show d < C for some C' = C(g). Note: 2,3 1 d, because otherwise 2 { a,b or 3 1 a,b.
Then a and b would be a power of the same prime. Not possible due to multiplicative independence.

Fix some n € Z-q sufficiently large depending on €. We apply the subspace theorem on V =

Q”Q/{(x,...,x):xe@}.

We will evaluate our functionals at the point e/d = (e1/d, ..., e,2/d) where ey, ..., e,2 is an enumer-
ation of a*b! for k=0,...,n—1,1=0,...,n — 1 such that e; = 1, e,2 = a™ 1b"" 1.
Note: & — % € Z. This is because ¢; = 1 (mod d). Also: |4 — < , < min (|4 v,|%|v) for all

v €S = {00,2,3}. The coordinates on Q"2 will be denoted by Y7,...,Y,2. All our linear forms on
V will be of the form Y; — Y for some 7 # j. This is indeed well defined on V. Reference basis

AP =Y — Y.
H (A§0> (2) A9 (2)) < a"b".
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For v = oc:

A =Y -1
AP (e/d)] = lej1/d]oo
AY =Y Y,

AP (e/d)], = leyl

n?—1 n2
IT 1459/l < [ [T les/dl | - d
j=1 j=1
n2-1 n?
[T 1A /@)l < | TTles/dlu | Jla™ 16"
j=1 j=1
n2—1
I II 1As(e/d)l < d- (@) -a
vesS j=1

1
lei/dloolej /dlales/d]s = 5
Lecture 23

d =ged(a — 1,b— 1) where a,b € S are multiplicatively independent. We assume: d > max(a, b)® for
some £ > 0. Our goal is to prove d < C(e).

n-1
[T TIAY /)l <daea, (+)
veS={c0,2,3} j=1
€1,...,ey2 is an enumeration of a*b', k,1=0,...,n— 1.
(¥) < max(a,b)?" 2 -max(a,b)_a("z_l).
Let’s take n > 3¢~ 1, (¥) < max(a,b) ™.
HA(e/d), ..., MY (e/d)) < am b1

() < H(--- )*%. Subspace theorem applies hence there exists a linear relation between ey, ...,e,2 € S
(distinet by multiplicative independence of a, b).

Proposition implies
lei — ejlooles — ejlales — €] < C'=Cle)

for some ¢ # j. Then e; # e; so e; — e; # 0. However, d | e; — e;.

d< |€Z' *ej|oo|ei *€j|2|6i — €j|3 < C.
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Theorem 1.16 (Feldman). Let o € Q of degree d > 3. Then there exists effective C = C(a) > 0
and € = ¢(a) > 0 such that for all % € qQ,

Remark. This is enough to solve P(x,y) = m, where P is a degree d homogeneous polynomial
without repeated factors. Thue equation.

Proposition. Let K be a number field. Then there exists r € Z>¢ and uy,...,u, € O and a
constant C' = C(K) such that Va € Ok, there exists @ € Ok and by, ..., b, € Z such that

H(@) < O |Nijq(@)|®T
)

‘bl‘,~~'7|br| S ClOgH(Oé
a:du?l ~-~u£r

Define ® : KX — RMx.= : (®(a)), = d, - log|a|, (logarithmic embedding). Note that here K* is the
group under multiplication, while RMx.> is the additive group.

INijo(a)=exp | Y (®(a)),

VEMEK oo

H(@)F U =exp [ > max(0, (2(a))y)

VEMK 00
For a € Ok, X(®(«))y > 0. Then:
exp([|®(a)|1/2) < H () < exp(||@(a)]1).
For o € Ok, Ngjg(a) =1. So
P(a) e W = {z € RMr=, va = 0}.
Kronecker’s theorem: ®~1(0) = ker ® are the roots of unity.

Dirichlet’s unit theorem: ®(Oj) is a lattice in W that is a Z-module of rank dim W = r which spans
w.
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Let uy,...,u, be a fundamental system of units, that is ®(uy),...,P(u,) is a basis for the lattice

®(0)). Fix some a € Ok. Pick some z € RIZWOK"X’ such that

va =log |Ng/g(a)].
>0
z € Pla)+W.
Then there exist y1,...,y, € R such that
7= () + yr®(un) + -+ D ().
There exists C' = C(K) such that |y;| < C - || ®()]]1.
Let b; € Z with |y; — b;| <1 and [b;| < |y;|. This gives |b;| < C - || ®(c)||1 < C'log H(c).

Take: & = ol ---ulr.

P(a) =P(a) + 01P(ur) + - + b, P(ur) =+ (b —y1)P(ug) +---.
(%)

(*) is in a fixed, compact region of W.

[@(a)[lr < C + [|l2]s-
H (&)™ < exp([|@(a)]11) < exp(C) - Niejg(a).

Lecture 24
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Theorem. « algebraic of degree d < 3. Then there exists C' = C(a) > 0, € = e(a)) > 0 such
that for all % e Q:

b

a— ‘ > ¢~ (479,
q

Proof. Fix some « and £ > 0 small enough. Suppose that

p

o — ‘ <q @9
q

for some £ € Q. We aim to show that ¢ < C'= C(a). We assume as we may that o is an algebraic
integer.

Let
P(X)= (X —a1) - (X —ag)

be the minimal polynomial of o = ;. Then:
(p—a1q) - (p—aaq) =Q < Cq".

With @ € Z. Then
Notay) /e — ajq) | Q%
In particular:
N(p—ojq) < Cq®.
Therefore: 3&;, u1,...,ur,b1,...,b. € Z such that p — ajq = djulil ---ubr. Then
H(&J) <C- qE
|b;| < C -logq

Use |p — anq| < g~ (412,

Then p — «;q is very close to (o — aj)g. Consider: (a; — ag)(1 — ag)gq, which is similar to both of
(p — a2q)(a1 — a3) and (a1 — a2)(p — azq).

Now more formally:

(p — azq) (a1 — a3)

N o — o) (0 — as0)

_ ‘1 _ ((p—o1q) + (1 — az)q) (a1 — a3)
(a1 —az)((p — a1q) + (a1 — az)q)
< C’q*(d*E)

A— K B é - max (K1, K2)
B—-—ky B q '
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A ~ B ~ ¢q. Now use the proposition:

P — g = Goul’ - ul

p—asq = azwit-wy”
H(ag),H(as) < C-¢°

b1l .., 10nl, leals -y ler] < C -loggq

G (o —a3)

= we have:
az(ar—az)

Writing o =

* by b

1 —a*ui* - -u, —(d=e),

r —€1 —e
wi twg o < Cg

H(a*) < C - ¢%*. Take log to be the principal branch, that is |Imlog(e)| < 7. Warning: log(zy) #
log(z) + log(y) in general. This is Lipschitz around 1, so we get

|log(a®) 4 b1 log(ug) + - - - + by log(u,) — €1 log(wy) — - - - — e, log(w,.) + 2k - log(—1) | < C’q*(d*‘i)
——

=i

for a suitable k € Z, and |k| < C'logg.

Reminder:

s N
Theorem. Let n € Z>,. Let a1,..., 0, € @;éo, and let log a;; be any choice of the log of ;.
Let by,...,b, € Z and let A = by logay + - -+ + by log v, Let

A; = max(H (a;),exp(|loga;l), 10)

|61 |bn—1]
B* = b,l|, 10
max <10gAn’ ’logAn’| nl,

Then there exists an effective constant C' (a function of n and the degree of Q(ay, ..., ay)) such
that A # 0 implies
|A] > exp(—C'log(Ay) - - -log(A,,) log(B™)).

- J

So the lower bound gives:

We apply the theorem with o, = *. Aq,..., A,_1 < C, A, < C-¢*. B* < &E: < % |k| < C'logg.

log
So

|A| > exp(—C - clogq-loge™!) > g~ Cclos et

We still need to consider A = 0. This is equivalent to:

(p — a2q) (a1 — )
(o1 —2)(p— asq)

1 =
Solving this equation gives cy = a3 or p = a1q. Neither is the case.

If we use the weaker bound for |A|, then we would prove:

ap'>0~q‘(d‘wgfogq>. O
q
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height 11, 12, 14
Mahler measure 14
mabhler 14, 15

minp 11, 14
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