%! TEX root = Combi.tex % vim: tw=50 % 07/11/2024 09AM \begin{fcthm}[] \label{thm_2_5} % Theorem 2 5 Assuming: - $0 < \eps < \quarter$ - $A \subset \Q_n$ - $\frac{|A|}{2^n} \ge \half$ Then: $\frac{|A_{\ineigh{\eps n}}|}{2^n} \ge 1 - \frac{2}{\eps} e^{- \frac{\eps^2 n}{2}}$. \end{fcthm} ``$\half$-sized sets have exponentially large $\eps n$-\glspl{neigh}.'' \begin{proof} Enough to show that if $\eps n$ an integer then \[ \frac{|A_{\ineigh{\eps n}}|}{2^n} \ge 1 - \frac{1}{\eps} e^{- \frac{\eps^2 n}{2}} .\] \begin{center} \includegraphics[width=0.3\linewidth]{images/aaa592e8d5da46b2.png} \end{center} Have $|A| \ge \sum_{i = 0}^{\left\lceil \frac{n}{2} - 1 \right\rceil} {n \choose i}$, so by \nameref{harper}, we have $|A_{\ineigh{\eps n}}| \ge \sum_{i = 0}^{\left\lceil \frac{n}{2} - 1 + \eps n\right\rceil} {n \choose i}$, so \[ |A_{\ineigh{\eps n}}^c| \le \sum_{i = \left\lceil \frac{n}{2} + \eps n \right\rceil}^n {n \choose i} = \sum_{i = 0}^{\left\lfloor \frac{n}{2} - \eps n\right\rfloor} {n \choose i} \le \frac{1}{\eps} e^{- \frac{\eps^2 n}{2}} 2^n . \qedhere \] \end{proof} \begin{remark*} Same would show, for ``small'' sets: \[ \frac{|A|}{2^n} \ge \frac{2}{\eps} e^{- \frac{\eps^2 n}{2}} \implies \frac{|A_{\ineigh{2\eps n}}|}{2^n} \ge 1 - \frac{2}{\eps} e^{- \frac{\eps^2 n}{2}} .\] \end{remark*} \subsection{Concentration of measure} \glsadjdefn{lips}{Lipschitz}{function}% Say $f : \Q_n \to \Rbb$ is \emph{Lipschitz} if $|f(x) - f(y)| \le 1$ for all $x, y$ adjacent. \glsadjdefn{med}{median}{function}% For $f : \Q_n \to \Rbb$, say $M \in \Rbb$ is a \emph{L\'evy mean} or \emph{median} of $f$ if \[ |\{x \in \Q_n : f(x) \le M\}| \ge 2^{n - 1} \] and \[ |\{x \in \Q_n : f(x) \ge M\}| \ge 2^{n - 1} \] Now ready to show ``every well-behaved function on the cube $\Q_n$ is roughly constant nearly everywhere''. \begin{fcthm}[] % Theorem 2 6 Assuming: - $f : \Q_n \to \Rbb$ \gls{lips} with \gls{med} $M$ Then: \[ \frac{|\{x : |f(x) - M| \le \eps n\}|}{2^n} \ge 1 - \frac{4}{\eps} e^{- \frac{\eps^2 n}{2}} \] for any $0 < \eps < \frac{1}{4}$. \end{fcthm} \begin{note*} This is the ``concentration of measure'' phenomenon. \end{note*} \begin{center} \includegraphics[width=0.3\linewidth]{images/e569b56ea85b4e22.png} \end{center} \begin{proof} Let $A = \{x : f(x) \le M\}$. Then $\frac{|A|}{2^n} \ge \half$, so \[ \frac{|A_{\ineigh{\eps n}}|}{2^n} \ge 1 - \frac{2}{\eps} e^{- \frac{\eps^2 n}{2}} .\] ut $f$ is \gls{lips}, so $x \in A_{\ineigh{\eps n}}$ implies $f(x) \le M + \eps n$. Thus \[ \frac{|\{x : f(x) \le M + \eps n\}|}{2^n} \ge 1 - \frac{2}{\eps} e^{- \frac{\eps^2 n}{2}} .\] Similarly, \[ \frac{|\{x : f(x) \ge M - \eps n\}|}{2^n} \ge 1 - \frac{2}{\eps} e^{- \frac{\eps^2 n}{2}} .\] Hence \[ \frac{|\{x : M - \eps n \le f(x) \le M + \eps n\}|}{2^n} \ge 1 - \frac{4}{\eps} e^{- \frac{\eps^2 n}{2}} . \qedhere \] \end{proof} Let $G$ be a graph of diameter $D$ ($D = \max \{f(x, y) : x, y \in G\}$). \begin{fcdefnstar}[$alpha(G, eps)$] \glssymboldefn{alphaG}% Write \[ \alpha(G, \eps) = \max \left\{ 1 - \frac{|A_{\ineigh{\eps D}}|}{|G|} : A \subseteq G, \frac{|A|}{|G|} \ge \half \right\} .\] So $\alpha(G, \eps)$ small says ``$\half$-sized sets have large $\eps D$-neighbourhoods''. \end{fcdefnstar} \begin{fcdefnstar}[Levy family] % [L\'evy family] \glsnoundefn{lf}{L\'evy family}{L\'evy families}% Say a sequence of graphs is a \emph{L\'evy family} if $\alphaG(G_n, \eps) \to 0$ as $n \to \infty$, for each $\eps > 0$. \end{fcdefnstar} So \cref{thm_2_5} tells us that the sequence $(\Q_n)$ is a \gls{lf} -- even a \emph{normal L\'evy family}, meaning $\alphaG(G_n, \eps)$ grows exponentially small in $n$, for each $\eps > 0$. So have concentration of measure for any \gls{lf}. Many naturally-occurring families of graphs are \glspl{lf}. \begin{example*} $(S_n)$, where $S_n$ is made into a graph by joining $\sigma$ to $\sigma'$ if $\sigma' \sigma^{-1}$ is a transposition. \end{example*} Can define $\alphaG(X, \eps)$ similarly for any metric measure space $X$ (of finite measure and finite diameter). \begin{example*} $(S^n)$ is a \gls{lf}. \begin{center} \includegraphics[width=0.3\linewidth]{images/4409a430bb404d2e.png} \end{center} Two ingredients: \begin{enumerate}[(1)] \item An isoperimetric inequality on $S_n$: for $A \subset S_n$, $C$ a circular cap with $|C| = |A|$, have $|A\neigh{\eps}| \ge |C_{\ineigh{\eps}}|$. Proof by compression: \begin{center} \includegraphics[width=0.6\linewidth]{images/c89c8d437e7444d3.png} \end{center} \item Estimate: circular cap $C$ of measure $\half$ is the cap of angle $\frac{\pi}{2}$, so $C_\eps$ is the circular cap of angle $\frac{\pi}{2} + \eps$. \begin{center} \includegraphics[width=0.3\linewidth]{images/de9624c0e3574a84.png} \end{center} This complement has measure about $\int_{\eps}^{\frac{\pi}{2}} \cos^{n - 1} t \dd t$, which $\to 0$ as $n \to \infty$. \begin{center} \includegraphics[width=0.3\linewidth]{images/7a02fd0102984c3e.png} \end{center} \end{enumerate} \end{example*} We deduced concentration of measure from an isoperimetric inequality. Conversely: \begin{fcprop}[] % Proposition 2 7 Assuming: - $t$, $\alpha$ and $G$ are such that for any \gls{lips} function $f : G \to \Rbb$ with \gls{med} $M$ we have \[ \frac{|\{x \in G : |f(x) - M| > t\}|}{|G|} \le \alpha ,\] Then: for all $A \subseteq G$ with $\frac{|A|}{|G|} \ge \half$, we have $\frac{|A_{\ineigh{t}}|}{|G|} \ge 1 - \alpha$. \end{fcprop} \begin{proof} The function $f(x) = d(x, A)$ is \gls{lips}, and has $0$ as a \gls{med}, so \[ \frac{|\{x \in G : x \notin A_{\ineigh{t}}\}|}{|G|} \le \alpha . \qedhere \] \end{proof}