%! TEX root = Combi.tex % vim: tw=50 % 05/11/2024 09AM % Example class: Friday, MR3, 1:30pm % Hand in Q2, Q3: pigeonhole, 5pm 05/11 % (Also hand in any starred questions if applicable) Define a sequence $A_0, A_1, \ldots \subset \Q_n$ as follows: \begin{itemize} \item Set $A_0 = A_1$. \item Having chosen $A_0, \ldots, A_k$: if $A_k$ is \gls{icomp} with $\Ci(A_k) \neq A_k$ and set $A_{k + 1} = \Ci(A_k)$ -- and continue. \end{itemize} Must terminate, because $\sum_{x \in A_k} \text{(position of $x$ in \gls{simpord})}$ is strictly decresing. The final family $B = A_k$ satisfies $|B| = |A|$, $|\neigh(B)| \le |\neigh(A)|$, and is \gls{icomp} for all $i$. Does $B$ \gls{icomp} for all $i$ imply that $B$ is an initial segment of \gls{simpord}? (If yes, then $B = C$ and we are done). Sadly, no. For example in $\Q_3$ can take $\{\emptyset, 1, 2, 12\}$: \begin{center} \includegraphics[width=0.6\linewidth]{images/7a39827950e5472c.png} \end{center} However: \begin{fclemma}[] % Lemma 2 2 Assuming: - $B \subset \Q_n$ is \gls{icomp} for all $i$ - $B$ not an initial segment of the \gls{simpord} Then: one of the following is true: \begin{itemize} \item either $n$ is odd, say $n = 2k + 1$, and $B = X\rsubs[\le k] - \{k + 2, k + 3, \ldots, 2k + 1\} \cup \{1, 2, \ldots, k + 1\}$ \item or $n$ is even, say $n = 2k$, and $B = X\rsubs[< k] \cup \{x \in X\rsubs[k] : 1 \in x\} - \{1, k + 2, k + 3, \ldots, 2k\} \cup \{2, 3, 4, \ldots, k + 1\}$. \end{itemize} \end{fclemma} For the even case: ``Remove the last \glsref[rset]{$k$-set} with $1$, and add the first \glsref[rset]{$k$-set} without $1$.'' \begin{center} \includegraphics[width=0.6\linewidth]{images/3aed31d9d6044779.png} \end{center} After we prove this, we will have solved our problem, as in each case we certainly have $|\neigh(B)| \ge |\neigh(C)|$. \begin{proof} Since $B$ is not an initial segment of \gls{simpord}, there exists $x < y$ (in \gls{simpord}) with $x \notin B$, $y \in B$. \begin{center} \includegraphics[width=0.6\linewidth]{images/654accffe0724da0.png} \end{center} For each $1 \le i \le n$: cannot have $i \in x$, $i \in y$ (as $B$ is \gls{icomp}). Also cannot have $i \notin x$, $i \notin y$ for the same reason. So $x = y^c$. Thus: for each $y \in B$, there exists at most one earlier $x$ with $x \notin B$ (namely $x = y^c$). Similarly, for each $x \notin B$ there is at most one later $y$ with $y \in B$ (namely $y = x^c$). \begin{center} \includegraphics[width=0.6\linewidth]{images/f164eac4684e4601.png} \end{center} So $B = \{z : z \le y\} - \{x\}$, with $x$ the predessor of $y$ and $x = y^c$. Hence if $n = 2k + 1$ then $x$ is the last \glsref[rset]{$k$-set}, and if $n = 2k$ then $x$ is the last \glsref[rset]{$k$-set} with $1$. \end{proof} \begin{proof}[Proof of \cref{harper}] Done by above. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Can also prove \nameref{harper} \glspl{uvc}. \item Can also prove \nameref{KK} using these `codimension $1$' compressions. \end{enumerate} \end{remark*} \glssymboldefn{ineigh}% For $A \subset \Q_n$ and $t = 1, 2, 3, \ldots$, the $t$-neighbourhood of $A$ is $A_{(t)} = \neigh^t(A) = \{x \in \Q_n : d(x, A) \le t\}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/ab5df83399a64ce9.png} \end{center} \begin{corollary} \label{coro_2_3} % Corollary 2 3 Let $A \subset \Q_n$ with $|A| \ge \sum_{i = 0}^r {n \choose i}$. Then \[ |A_{(t)}| \ge \sum_{i = 0}^{r + t} {n \choose i} \] for all $t \le n - r$. \end{corollary} \begin{proof} \cref{harper} with induction on $t$. \end{proof} To get a feeling for the strength of \cref{coro_2_3}, we'll need some estimates on things like $\sum_{i = 0}^{r} {n \choose i}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/c51d6938b0df4812.png} \end{center} ``Going $\eps\sqrt{n}$ standard deviations away from the mean $\frac{n}{2}$.'' \begin{fcprop}[] % Proposition 2 4 Assuming: - $0 < \eps < \quarter$ Then: \[ \sum_{i = 0}^{\left\lfloor \left( \half - \eps \right) n \right\rfloor } {n \choose i} \le \frac{1}{\eps} e^{-\frac{\eps^2 n}{2}} \cdot 2^n .\] \end{fcprop} ``For $\eps$ fixed, $n \to \infty$, this is an \emph{exponentially small} fraction of $2^n$.'' \begin{proof} For $i \le \left\lfloor \left( \half - \eps \right) n \right\rfloor$: \[ {n \choose i} = {n \choose i} \frac{i}{n - i + 1} ,\] so \[ \frac{{n \choose i - 1}}{{n \choose i}} = \frac{i}{n - i + 1} \le \frac{\left( \half - \eps \right) n}{\left( \half + \eps \right) n} = \frac{\half - \eps}{\half + \eps} = 1 - \frac{2\eps}{\half + \eps} \le 1 - 2\eps .\] Hence \[ \sum_{i = 0}^{\left\lfloor \left( \half - \eps \right) n \right\rfloor} {n \choose i} \le \frac{1}{2\eps} {n \choose \left\lfloor \left( \half - \eps \right) n \right\rfloor} \] (sum of a geometric progression). Same argument tells us that \begin{align*} {n \choose \left\lfloor \left( \half - \eps \right) n \right\rfloor} &\le {n \choose \left\lfloor \left( \half - \frac{\eps}{2} \right) n \right\rfloor} \left( 1 - 2 \frac{\eps}{2} \right)^{\frac{\eps n}{2} - 1} &&\text{-1 from the $\lfloor \bullet \rfloor$ stuff} \\ &\le 2^n \cdot 2 (1 - \eps)^{\frac{\eps n}{2}} \\ &\le 2^n \cdot 2 e^{-\frac{\eps^2 n}{2}} &&\text{as $1 - \eps \le e^{-\eps}$} \end{align*} Thus \[ \sum_{i = 0}^{\left\lfloor \left( \half - \eps \right) n \right\rfloor} {n \choose i} \le \frac{1}{2\eps} \cdot 2e^{-\frac{\eps^2 n}{2}} \cdot 2^n . \qedhere \] \end{proof}