%! TEX root = Combi.tex % vim: tw=50 % 31/10/2024 09AM \newpage \section{Isoperimetric Inequalities} ``How do we minimise the boundary of a set of given size?'' \begin{example*} Among all subsets of $\Rbb^2$ of given area, the disc minimises the perimeter. \begin{center} \includegraphics[width=0.6\linewidth]{images/dff7eeedaec947f3.png} \end{center} Among all subsets of $\Rbb^3$of given volume, the solid sphere minimises the surface area. \begin{center} \includegraphics[width=0.3\linewidth]{images/b626d72cbaee461d.png} \end{center} Among all subsets of $S^2$ of given surface area, the circular arc has the smallest perimeter. \begin{center} \includegraphics[width=0.3\linewidth]{images/93edbd0a48a34672.png} \end{center} \end{example*} \begin{definition*}[Boundary in a graph] \glssymboldefn{b}% \glsnoundefn{bound}{boundary}{boundaries}% For a set $A$ of vertices of a graph $G$, the \emph{boundary} of $A$ is \[ b(A) = \{x \in G : x \notin A, xy \in E \text{ for some $y \in A$}\} .\] \end{definition*} \begin{example*} Here, if $A = \{1, 2, 4\}$, then $\bound(A) = \{3, 5\}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/8476c40faa0a45f3.png} \end{center} \end{example*} \begin{definition*}[Isoperimetric inequality] An \emph{isoperimetric inequality} on $G$ is an inequality of the form \[ |\bound(A)| \ge f(|A|) \qquad \forall A \subset G ,\] for some function $f$. \end{definition*} \begin{definition*}[Neighbourhood] \glssymboldefn{neigh}% \glsnoundefn{neigh}{neighbourhood}{neighbourhoods}% Often simpler to look at the \emph{neighbourhood} of $A$: $N(A) = A \cup \bound(A)$. So \[ N(A) = \{x \in G : d(x, A) \le 1\} .\] \end{definition*} A good example for $A$ might be a ball $B(x, r) = \{y \in G : d(x, y) \le r\}$. What happens for $\Q_n$? \begin{example*} $|A| = 4$ in $\Q_3$. \begin{center} \includegraphics[width=0.6\linewidth]{images/8b2e165291284932.png} \end{center} \end{example*} Good guess that balls are best, i.e. sets of the form $B(\emptyset, r) = X\rsubs[\le r] = X\rsubs[0] \cup X\rsubs[1] \cup \cdots \cup X\rsubs$. What if $|X\rsubs[\le r]| < |A| < |X\rsubs[r + 1]|$? Guess: take $A$ with $X\rsubs[\le r] < A < X\rsubs[\le r + 1]$. If $A = X\rsubs[\le r] \cup B$, where $B \subset X\rsubs[r + 1]$, then $\bound(A) = (X\rsubs[r + 1] - B) \cup \ushadow B$. So we'd take $B$ to be an initial segment of \gls{lex} (by \nameref{KK}). This suggests... \glsnoundefn{simpord}{simplicial ordering}{NA}% In the \emph{simplicial ordering} on $\powset X$, we set $x < y$ if \emph{either} $|x| < |y|$ \emph{or} $|x| = |y|$ and $x < y$ in \gls{lex}. \textbf{Aim:} initial segments of \gls{simpord} minimise the \gls{bound}. \begin{definition*}[$i$-sections] \glsnoundefn{nsect}{$n$-section}{$n$-sections}% \glssymboldefn{lowerupperlayers}% \glssymboldefn{Ci}% For $A \subset \powset X$ and $1 \le i \le n$, the \emph{$i$-sections} of $A$ are the families $A_-^{(i)}, A_+^{(i)} \subset \powset{X - i}$ given by: \begin{align*} A_-^{(i)} &= \{x \in A : i \notin x\} \\ A_+^{(i)} &= \{x - i : x \in A, i \in x\} \end{align*} The \emph{$i$-compression} of $A$ in the family $C_i(A) \subset \powset X$ given by: \begin{itemize} \item $(C_i(A))_-^{(i)}$ is the first $|A_-^{(i)}|$ elements of \gls{simpord} on $\powset{X - i}$ \item $(C_i(A))_+^{(i)}$ is the first $|A_+^{(i)}|$ elements of \gls{simpord} on $\powset{X - i}$ \end{itemize} \end{definition*} \begin{center} \includegraphics[width=0.5\linewidth]{images/1bc1e5e9f2df4554.png} \end{center} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/734b7509a6d74a11.png} \end{center} \glsadjdefn{icomp}{$i$-compressed}{family}% Certainly $|\Ci(A)| = |A|$. Say $A$ is \emph{$i$-compressed} if $\Ci(A) = A$. Also, $\Ci(A)$ ``looks more like'' a Hamming ball than $A$ does. \glsnoundefn{hball}{Hamming ball}{Hamming balls} Here, a \emph{Hamming ball} is a family $A$ with $X\rsubs[\le r] \subset A \subset X\rsubs[\le r + 1]$, for some $r$. \end{example*} \begin{fcthm}[Harper's Theorem] \label{harper} % Theorem 2 1 Assuming: - $A \subset \Q_n$ - $C$ the initial segment of \gls{simpord} with $|C| = |A|$ Then: $|\neigh(A)| \ge |\neigh(C)|$. In particular, if $|A| = \sum_{i = 0}^{r} {n \choose i}$ then $|\neigh(A)| \ge \sum_{i = 0}^{r + 1} {n \choose i}$. \end{fcthm} \begin{center} \includegraphics[width=0.4\linewidth]{images/73422fe3cccc4ad8.png} \end{center} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item If we knew $A$ was a \gls{hball}, then we would be done by \nameref{KK}. \item Conversely, \nameref{harper} implies \nameref{KK}: given $B \subset X\rsubs$, then apply \nameref{harper} to $A = X\rsubs[\le r - 1] \cup B$. \end{enumerate} \end{remark*} \begin{proof} Induction on $n$: $n = 1$is trivial. Given $n > 1$, and $A \subset \Q_n$, and $1 \le i \le n$. \textbf{Claim:} $|\neigh(\Ci(A))| \le |\neigh(A)|$. Proof of claim: Write $B$ for $\Ci(A)$. We have \begin{align*} \neigh(A)\lowerl &= \neigh(A\lowerl) \cup A\upperl \\ \neigh(A)\upperl &= \neigh(A\upperl) \cup A\lowerl \end{align*} and of course \begin{align*} \neigh(B)\lowerl &= \neigh(B\lowerl) \cup B\upperl \\ \neigh(B)\upperl &= \neigh(B\upperl) \cup B \lowerl \end{align*} Now, $|B\upperl| = |A\upperl|$ and $|\neigh(B\lowerl)| \le |\neigh(A\lowerl)|$ (by the induction hypothesis). But $B\upperl$ is an initial segment of \gls{simpord}, and $\neigh(B\lowerl)$ is an initial segment of \gls{simpord} (as neighbourhood of initial segment is an initial segment). So then $B\upperl$ and $\neigh(B\lowerl)$ are \emph{nested} (one conatined in the other). Hence $|\neigh(B)\lowerl| \le |\neigh(A)\lowerl|$. Similarly, $|\neigh(B)\upperl| \le |\neigh(A)\upperl|$. Hence $|\neigh(B)| \le |\neigh(A)|$, which completes the proof of our claim. \end{proof}