%! TEX root = Combi.tex % vim: tw=50 % 29/10/2024 09AM \begin{remark*} Proof of \nameref{KK} used \cref{lemma_1_6} and \cref{lemma_1_7}, but not \cref{lemma_1_4} or \cref{coro_1_5}. \end{remark*} \subsection{Intersecting Families} \glsadjdefn{int}{intersecting}{families}% Say $\mathcal{A} \subset \powset X$ \emph{intersecting} if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{A}$. How large can an \gls{int} family be? Can have $|\mathcal{A}| = 2^{k - 1}$, by taking $\mathcal{A} = \{A : 1 \in A\}$. \begin{fcprop}[] % Proposition 1 11 Assuming: - $\mathcal{A} \subset \powset{X}$ be \gls{int} Then: $|\mathcal{A}| \le 2^{k - 1}$. \end{fcprop} \begin{proof} For any $A \subset X$, at most one of $A, A^c$ can belong to $\mathcal{A}$. \end{proof} \begin{note*} Many other extremal examples. For example, for $n$ odd take $\{A : |A| > \frac{k}{2}\}$. \end{note*} What if $\mathcal{A} \subset X\rsubs$? If $r > \frac{n}{2}$, take $\mathcal{A} = X\rsubs$. If $r = \frac{n}{2}$: just choose one of $A, A^c$ for all $A \in X\rsubs$: gives $|\mathcal{A}| = \half {n \choose r}$. So interesting case is $r < \frac{n}{2}$. Could try $\mathcal{A} = \{A \in X\rsubs : 1 \in A\}$. Has size ${n - 1 \choose r - 1} = \frac{r}{n} {n \choose r}$ (while this identity can be verified by writing out factorials, a more useful way of observing it is by noting that $\Pbb(\text{random \gls{rset} contains $1$}) = \frac{r}{n}$). Could also try $\mathcal{B} = \{A \in X\rsubs : |\mathcal{A} \cap \{1, 2, 3\}| \ge 2\}$. \begin{example*} $n = 8$, $r = 3$. Then $|\mathcal{A}| = {7 \choose 2} = 21$ and \[ |\mathcal{B}| = \ub{1}_{|B \cap [3]| = 3} + \ub{{3 \choose 2} {5 \choose 1}}_{|B \cap [3]| = 2} = 16 < 21 .\] \end{example*} \begin{fcthm}[Erdos-Ko-Rado Theorem] \label{ekr} % [Erd\H{o}s-Ko-Rado Theorem] % Theorem 1 12 Assuming: - $\mathcal{A} \subset X\rsubs$ be \gls{int}, where $r < \frac{n}{2}$ Then: $|\mathcal{A}| \le {n - 1 \choose r - 1}$. \end{fcthm} \begin{proof}[Proof 1 (``Bubble down with \nameref{KK}'')] Note that $A \cap B \neq \emptyset \iff A \not \subset B^c$. \begin{center} \includegraphics[width=0.6\linewidth]{images/4c6f69975e424654.png} \end{center} Let $\ol{\mathcal{A}} = \{A^c : A \in \mathcal{A}\} \subset X\rsubs[n - r]$. Have $\shadow^{n - 2r} \ol{\mathcal{A}}$ and $\mathcal{A}$ are \emph{disjoint} families of \glspl{rset}. Suppose $|\mathcal{A}| > {n - 1 \choose r - 1}$. Then $|\ol{\mathcal{A}}| = |\mathcal{A}| > {n - 1 \choose r - 1} = {n - 1 \choose n - r}$. Whence by \nameref{KK} we have $|\shadow^{n - 2r} \ol{\mathcal{A}}| \ge {n - 1 \choose r}$. So $|\mathcal{A}| + |\shadow^{n - 2r} \ol{\mathcal{A}}| > {n - 1 \choose r - 1} + {n - 1 \choose r} = {n \choose r}$, a contradiction. \end{proof} \begin{remark*} Calculation at the end \emph{had} to give the right answer, as the $\shadow$ calculations would all be exact if $\mathcal{A} = \{A \in X\rsubs : 1 \in A\}$. \end{remark*} \begin{proof}[Proof 2] Pick a \emph{cyclic ordering} of $[n]$ i.e. a bijection $c : [n] \to \Zbb_n$. \begin{center} \includegraphics[width=0.6\linewidth]{images/9560e229c2aa48be.png} \end{center} How many sets in $\mathcal{A}$ are intervals ($r$ consecutive elements) in this ordering? Answer: $\le r$. Because say $C_1, \ldots, C_r \in \mathcal{A}$. Then for each $2 \le i \le 1$, at most one of the two intervals $C_i C_{i + 1} \ldots C_{i + r - 1}$ and $C_{i - r} C_{i - r + 1} \ldots C_{i - 1}$ can belong to $\mathcal{A}$ (subscrpits are modulo $n$). For each \gls{rset} $A$, in how many of the $n!$ cyclic orderings is it an interval? Answer: $n r! (n - r)!$ ($n =$ where, $r! =$ order inside $A$, $(n - r)! =$ order outside $A$). Hence $~\mathcal{A}| nr!(n - r)! \le n!r$, i.e. $|\mathcal{A}| \le \frac{n!r}{n r!(n - r)!} = {n - 1 \choose r - 1}$. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Numbers had to work out, given that we get equality $\mathcal{A} = \{A \in X\rsubs : 1 \in A\}$. \item Equivalently, we are double-counting the edges in the bipartite graph, with vertex classes $\mathcal{A}$ and all cycling orderings, with $A$ joined to $c$ if $A$ is an interval in $c$. \item This method is caled \emph{averaging} or \emph{Katona's method}. \item Equality in \nameref{ekr}? Our example is actually unique -- if $\mathcal{A} \subset X\rsubs$ is \gls{int} and $|\mathcal{A}| = {n - 1 \choose r - 1}$, then $\mathcal{A} = \{A \in X\rsubs : i \in A\}$ for some $1 \le i \le n$. Can get this from Proof 1 (and equality in \nameref{KK}) or from Proof 2 (with a bit of care). \end{enumerate} \end{remark*}