%! TEX root = Combi.tex % vim: tw=50 % 24/10/2024 09AM \begin{fclemma}[] \label{lemma_1_7} % Lemma 1 7 Assuming: - $U, V \subset X$ - $|U| = |V|$ - $U \cap V = \emptyset$ - $\max U < \max V$ - $\mathcal{A} \subset X\rsubs$ - \phantom{} \\[-2.1\baselineskip] \[ \forall u \in U ~\exists v \in V \text{ such that $\mathcal{A}$ is \glsref[uvc]{$(U-u, V-v)$-compressed}} \tag{$*$} \label{comp_cond_eq} \] Then: $|\shadow \CUV(\mathcal{A})| \le |\shadow \mathcal{A}|$. \end{fclemma} \begin{proof} Let $\mathcal{A}' = \CUV(\mathcal{A})$. For $B \in \shadow \mathcal{A}' - \shadow \mathcal{A}$, we'll show $U \subset B$, $V \cap B = \emptyset$, and $B \cup V - U \in \shadow \mathcal{A} - \shadow \mathcal{A}'$. (Then done). \begin{center} \includegraphics[width=0.3\linewidth]{images/7368fcd23c50404c.png} \end{center} Have $B \cup x \in \mathcal{A}'$ for some $x$, and $B \cup x \notin \mathcal{A}$, so $U \subset B \cup x$, $V \cap (B \cup x) = \emptyset$, and $(B \cup x) \cup V - U \in \mathcal{A}$ (by definition of $\CUV$). \underline{If $x \in U$:} there exists $y \in U$ such that $\mathcal{A}$ is \glsref[uvc]{$(U - x, V - y)$-compressed}, so from $(B \cup x) \cup V - U \in \mathcal{A}$ we have $B \cup y \in \mathcal{A}$ -- contradicting $B \notin \shadow \mathcal{A}$, contradiction. Thus $x \notin U$, and so $U \subset B$, $V \cap B = \emptyset$. Certainly $B \cup V - U \in \shadow \mathcal{A}$ (because $(B \cup x) \cup V - U \in \mathcal{A}$), so just need to show that $B \cup V - U \notin \shadow \mathcal{A}'$. Suppose $B \cup V - U \in \shadow \mathcal{A}'$: so $(B \cup V - U) \cup w \in \mathcal{A}'$, for some $w$. Also have $(B \cup V - U) \cup w \in \mathcal{A}$ (for example, as $V$ contained in it). \underline{If $w \in U$:} know $\mathcal{A}$ is \glsref[uvc]{$(U - w, V - z)$-compressed} for some $z \in V$, so $B \cup z \in \mathcal{A}$ -- contradicting $B \notin \shadow$. \underline{If $w \notin U$:} have $V \subset (B \cup V - U) \cup w$, $U \cap ((B \cup V - U) \cup w) = \emptyset$, so by definition of $\CUV$ we must have that \emph{both} $(B \cup V - U) \cup w$ and $B \cup w \in \mathcal{A}$ -- contradicting $B \notin \shadow \mathcal{A}$, a contradiction. \end{proof} \begin{fcthm}[Kruskal-Katona] \label{KK} % Theorem 1 8 Assuming: - $\mathcal{A} \subset X\rsubs$, $1 \le r \le n$ - $\mathcal{C}$ is the initial segment of \gls{colex} on $X\rsubs$ with $|\mathcal{C}| = |\mathcal{A}|$ Then: $|\shadow \mathcal{C}| \le |\shadow \mathcal{A}|$. In particular: if $|\mathcal{A}| = {k \choose r}$, then $|\shadow \mathcal{A}| \ge {k \choose r - 1}$. \end{fcthm} \begin{proof} Let $\Gamma = \{(U, V) : |U| = |V| > 0, U \cap V = \emptyset, \max U < \max V\} \cup \{(\emptyset, \emptyset)\}$. Define a sequence $\mathcal{A}_0, \mathcal{A}_1, \ldots$ of set systems in $X\rsubs$ as follows: \begin{itemize} \item Set $\mathcal{A}_0 = \mathcal{A}$. \item Having chosen $\mathcal{A}_0, \ldots, \mathcal{A}_k$, if $\mathcal{A}_k$ is \gls{uvced} for all $(U, V) \in \Gamma$ then stop. Otherwise, choose $U, V \in \Gamma$ with $|U| = |V| > 0$ minimal such that $\mathcal{A}_k$ is not \gls{uvced}. Note that $\forall u \in U ~ \exists v \in V$ such that $(U - u, V - v) \in \Gamma$ (namely, use $v = \min V$). So \eqref{comp_cond_eq} is satisfied. So \cref{lemma_1_7} tells us that $|\shadow \CUV(\mathcal{A}_k)| \le |\shadow \mathcal{A}_k|$. Set $\mathcal{A}_{k + 1} = \CUV(\mathcal{A}_k)$, and continue. \end{itemize} Must terminate, as $\sum_{A \in \mathcal{A}_k} \sum_{i \in A} 2^i$ is strictly decreasing. The final term $\mathcal{B} = \mathcal{A}_k$ satisfies $|\mathcal{B}| = |\mathcal{A}|$, $|\shadow \mathcal{B}| \le |\shadow \mathcal{A}|$ and is \gls{uvced} for all $(U, V) \in \Gamma$. So $\mathcal{B} = \mathcal{C}$ by \cref{lemma_1_6}. \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Equivalently: if \[ |\mathcal{A}| = {k_r \choose r} + {k_{r - 1} \choose r - 1} + \cdots + {k_s \choose s} ,\] where $k_r > k_{r - 1} > \cdots > k_s$, and $s \ge 1$, then \[ |\shadow \mathcal{A}| \ge {k_r \choose r - 1} + {k_{r - 1} \choose r - 2} + \choose + {k_s \choose s - 1} .\] \item Equality in \nameref{KK}? Can check that if $|\mathcal{A}| = {k \choose r}$ and $|\shadow| = {k \choose r - 1}$ (i.e. equality in a step of the proof of \nameref{KK}), then $A = Y\rsubs$, for some $Y \subset X$ with $|Y| = k$. \item However, not true in general that $|\shadow \mathcal{A}| = |\shadow \mathcal{C}|$ implies that $\mathcal{A}$ is isomorphic to $\mathcal{C}$. (uset systems $\mathcal{A}, \mathcal{B}$ are \emph{isomorphic} if there exists permutation of the ground set $X$ sending $\mathcal{A}$ to $\mathcal{B}$). \end{enumerate} \end{remark*} \glssymboldefn{ushadow}% For $A \subset X\rsubs$, $0 \le r \le n$, the \emph{upper shadow} of $\mathcal{A}$ is \[ \partial^+ \mathcal{A} = \{A \cup x : A \in \mathcal{A}, x \notin A\} \subset X\rsubs[r + 1] .\] \begin{corollary} % Corollary 1 9 Let $\mathcal{A} \subset X\rsubs$, where $0 \le r \le n$, and let $\mathcal{C}$ be the initial segment of \gls{lex} on $X\rsubs$ with $|\mathcal{C}| = |\mathcal{A}|$. Then $|\ushadow \mathcal{A}| \ge |\ushadow \mathcal{C}|$. \end{corollary} \begin{proof} From \nameref{KK}, since $A < B$ in \gls{colex} if and only if $A^c < B^c$ in \gls{lex} with ground-set order reversed. \end{proof} Note that the \gls{shad} of an initial segment of \gls{colex} on $X\rsubs$ is an initial segment of \gls{colex} on $X\rsubs[r - 1]$ -- as if $\mathcal{C} = \{A \in X\rsubs : A \le a_1 \ldots a_r \text{ in \gls{colex}}\}$ then $\shadow \mathcal{C} = \{B \in X\rsubs[r - 1] : B \le a_2 \ldots a_r \text{ in \gls{colex}}\}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/d90ec4416a3c4d0a.png} \end{center} This fact gives: \begin{corollary} % Corollary 1 10 Let $\mathcal{A} \subset X\rsubs$, and $\mathcal{C}$ is the initial segment of \gls{colex} on $X\rsubs$ with $|\mathcal{C}| = |\mathcal{A}|$. Then $|\shadow^t \mathcal{C}| \le |\shadow^t \mathcal{A}|$ for all $1 \le t \le r$. \end{corollary} \begin{proof} If $|\shadow^t \mathcal{C} \le |\shadow^t \mathcal{A}|$, then $|\shadow^{t + 1} \mathcal{C}| \le |\shadow^{t + 1} \mathcal{A}|$, because $\shadow^t \mathcal{C}$ is an initial segment of \gls{colex}. Done by induction. \end{proof} \begin{note*} If $|\mathcal{A}| = {k \choose r}$, then $|\shadow^t \mathcal{A}| \ge {k \choose r - t}$. \end{note*}