%! TEX root = Combi.tex % vim: tw=50 % 22/10/2024 09AM ``\Gls{colex} prefers 1 to 2'' inspires: \begin{fcdefn}[$ij$-compression] \glssymboldefn{Cij}% \glsnoundefn{ijc}{$ij$-compression}{$ij$-compressions}% Fix $1 \le i < j \le n$. The \emph{$ij$-compression} $C_{ij}$ is defined as follows: For $A \in X\rsubs$, set \[ C_{ij}(A) = \begin{cases} A \cup i - j & \text{if $j \in A$, $i \notin A$} \\ A & \text{otherwise} \end{cases} ,\] and for $\mathcal{A} \subset X\rsubs$, set \[ C_{ij}(\mathcal{A}) = \{C_{ij}(A) : A \in \mathcal{A}\} \cup \{A \in \mathcal{A} : C_{ij}(A) \in A\} .\] \end{fcdefn} Note that the second part of the union in $\Cij(\mathcal{A})$ is because we need to make sure that we ``replace $j$ by $i$ where possible''. \begin{center} \includegraphics[width=0.6\linewidth]{images/4af548aef06046bd.png} \end{center} \begin{example*} If $\mathcal{A} = \{123, 134, 234, 235, 146, 567\}$ then $\Cij[12](\mathcal{A}) = \{123, 134, 234, 135, 146, 567\}$. \end{example*} So $\Cij(\mathcal{A}) \subset X\rsubs$, and $|\Cij(\mathcal{A})| = |\mathcal{A}|$. Say $\mathcal{A}$ is \emph{$ij$-compressed} if $\Cij(\mathcal{A}) = \mathcal{A}$. \begin{fclemma}[] \label{lemma_1_4} % Lemma 1 4 Assuming: - $\mathcal{A} \subset X\rsubs$ - $1 \le i < j \le n$ Then: $|\shadow \Cij(\mathcal{A})| \le |\shadow \mathcal{A}|$. \end{fclemma} \begin{proof} Write $\mathcal{A}'$ for $\Cij(\mathcal{A})$. Let $B \in \shadow \mathcal{A}' - \shadow \mathcal{A}$. We'll show that $i \in B$, $j \notin B$ and $B \cup j - i \in \shadow \mathcal{A} - \shadow \mathcal{A}'$. [Then done]. \begin{center} \includegraphics[width=0.6\linewidth]{images/0ef7288d9c0445a9.png} \end{center} Have $B \cup x \in \mathcal{A}'$ for some $x$, with $B \cup x \notin \mathcal{A}$ (as $B \notin \shadow \mathcal{A}$). So $i \in B \cup x$, $j \notin B \cup x$, and $(B \cup x) \cup j - i \in \mathcal{A}$. Cannot have $x = i$, else $(B \cup x) \cup j - i = B \cup j$, giving $B \in \shadow \mathcal{A}$, contradiction. Hence we have $i \in B$, $j \notin B$. Also, $B \cup j - i \in \shadow \mathcal{A}$, since $(B \cup x) \cup j - i \in \mathcal{A}$. Suppose $B \cup j - i \in \shadow \mathcal{A}'$: so $(B \cup j - i) \cup y \in \mathcal{A}'$ for some $y$. Cannot have $y = i$, else $B \cup j \in \mathcal{A}'$ -- so $B \cup j \in \mathcal{A}$ (as $j \in B \cup j$), contradicting $B \notin \shadow \mathcal{A}$. Hence $j \in (B \cup j - i) \cup y$ and $i \notin (B \cup j - i) \cup y$. Whence both $(B \cup j - i) \cup y$ and $B \cup y$ belong to $\mathcal{A}$ (by definition of $\mathcal{A}'$), contradicting $B \notin \shadow \mathcal{A}$. \end{proof} \begin{remark*} Actually showed that $\shadow \Cij(A) \subset \Cij \shadow \mathcal{A}$. \end{remark*} \begin{fcdefn}[Left-compressed] \glsadjdefn{leftc}{left-compressed}{family}% Say $\mathcal{A} \subset X\rsubs$ is \emph{left-compressed} if $\Cij(\mathcal{A}) = \mathcal{A}$ for all $i < j$. \end{fcdefn} \begin{corollary} \label{coro_1_5} % Corollary 1 5 Let $\mathcal{A} \subset X\rsubs$. Then there exists a \gls{leftc} $\mathcal{B} \subset X\rsubs$ with $|\mathcal{B}| = |\mathcal{A}|$ and $|\shadow \mathcal{B}| \le |\shadow \mathcal{A}|$. \end{corollary} \begin{proof} Define a sequence $\mathcal{A}_0, \mathcal{A}_1, \ldots$ as follows. Set $\mathcal{A}_0 = \mathcal{A}$. Having defined $\mathcal{A}_0, \ldots, \mathcal{A}_k$, if $\mathcal{A}_k$ \gls{leftc} then stop the sequence with $\mathcal{A}_k$. If not, choose $i < j$ such that $\mathcal{A}_k$ is not \gls{ijc}, and set $\mathcal{A}_{k + 1} = \Cij(\mathcal{A}_k)$. This must terminate, because for example $\sum_{A \in \mathcal{A}_k} \sum_{i \in \mathcal{A}}$ is strictly decreasing in $k$. Final term $\mathcal{B} = \mathcal{A}_k$ satisfies $|\mathcal{B}| = |\mathcal{A}|$, and $|\shadow \mathcal{B}| \le |\shadow \mathcal{A}|$ (by \cref{lemma_1_4}) \end{proof} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Or: among all $\mathcal{B} \subset X\rsubs$ with $|\mathcal{B}| = |\mathcal{A}|$ and $|\shadow \mathcal{B}| \le |\shadow \mathcal{A}|$, choose one with minimal $\sum_{A \in \mathcal{B}} \sum_{i \in A} i$. \item Can choose order of the $\Cij$ so that no $\Cij$ applied twice. \item Any initial segment of \gls{colex} is \gls{leftc}. Converse false, for example $\{123, 124, 125, 126\}$ (initial segment of \gls{lex}). \end{enumerate} \end{remark*} These compressions only encode the idea ``\gls{colex} prefers $i$ to $j$ ($i < j$)'', but this is also true for \gls{lex}. So we try to come up with more compressions that encode more of what \gls{colex} likes. ``\Gls{colex} prefers $23$ to $14$'' inspires: \begin{fcdefn}[$UV$-compression] \glssymboldefn{CUV}% \glsnoundefn{uvc}{$UV$-compression}{$UV$-compressions}% \glsnoundefn{uvced}{$UV$-compressed}{NA}% Let $U, V \subset X$ with $|U| = |V|$, $U \cap V = \emptyset$ and $\max V > \max U$. We define the \emph{$UV$-compression} as follows: for $A \subset X$, \[ C_{UV}(A) = \begin{cases} A \cup U - V & \text{if $V \subset A$, $U \cap A = \emptyset$} \\ A & \text{otherwise} \end{cases} ,\] and for $\mathcal{A} \subset X\rsubs$, set \[ C_{UV}(\mathcal{A}) = \{C_{UV}(A) : A \in \mathcal{A}\} \cup \{A \in \mathcal{A} : C_{UV} \in \mathcal{A}\} .\] \end{fcdefn} \begin{example*} If \[ \mathcal{A} = \{123, 124, 147, 237, 238, 149\} ,\] then \[ \CUV[23,14](\mathcal{A}) = \{123, 124, 147, 237, 238, 239\} .\] \end{example*} So $\CUV(\mathcal{A}) \subset X\rsubs$, and $|\CUV(\mathcal{A})| = |\mathcal{A}|$. Say $\mathcal{A}$ is \emph{$UV$-compressed} if $\CUV(\mathcal{A}) = \mathcal{A}$. Sadly, we can have $|\shadow \CUV(\mathcal{A})| > |\shadow \mathcal{A}|$: \begin{example*} $\mathcal{A} = \{147, 157\}$ has $|\shadow \mathcal{A}| = 5$, but $\CUV[23,14](\mathcal{A}) = \{237, 147\}$ has $|\shadow \CUV[23, 14](\mathcal{A})| = 6$. \end{example*} Despite this, we at least we do have the following: \begin{fclemma}[] \label{lemma_1_6} % Lemma 1 6 Assuming: - $\mathcal{A} \subset X\rsubs$ is \gls{uvc} for all $U, V$ with $|U| = |V|$, $U \cap V = \emptyset$, $\max V > \max U$ Then: $\mathcal{A}$ is an initial segment of \gls{colex}. \end{fclemma} \begin{proof} Suppose not. So there exists $A, B \in X\rsubs$ with $B < A$, in \gls{colex} but $A \in \mathcal{A}$, $B \notin \mathcal{A}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/c1f6a37bd8774f65.png} \end{center} Put $V = A \setminus B$, $U = B \setminus A$. Then $|V| = |U|$, and $U, V$ disjoint, and $\max V > \max U$ (since $\max(A \Delta B) \in \mathcal{A}$, by definition of \gls{colex}). So $\CUV(A) = B$, contradicting $\mathcal{A}$ is \gls{uvc}. \end{proof}