%! TEX root = Combi.tex % vim: tw=50 % 17/10/2024 09AM \begin{proof}[Proof 2] Choose, uniformly at random, a maximal chain $\mathcal{C}$ (i.e. $C_0 \subset C_1 \subset C_2 \subset \cdots \subset C_n$, with $|C_r| = r$ for all $r$). \begin{center} \includegraphics[width=0.3\linewidth]{images/b75c6878885a4e32.png} \end{center} For any \gls{rset} $A$, $\Pbb(A \in \mathcal{C}) = \frac{1}{{n \choose r}}$ (all \glspl{rset} are equally likely). So $\Pbb( \mathcal{C} \text{ meets } \mathcal{A}_r) = \frac{| \mathcal{A}_r|}{{n \choose r}}$ (as events are disjoint) and hence \[ 1 \ge \Pbb( \mathcal{C} \text{ meets } \mathcal{A}) = \sum_{r = 0}^n \frac{| \mathcal{A}_r|}{{n \choose r}} . \qedhere \] \end{proof} Equivalently: (if you want to lose the intuition about how this works) then: $\text{\#maximal chains} = n!$, and $\text{\#through any fixed \gls{rset}} = r!(n - r)!$, hence \[ \sum_r | \mathcal{A}_r| r!(n - r)! \le n! .\] \subsection{Shadows} For $\mathcal{A} \subset X\rsubs$, know $|\shadow \mathcal{A}| \frac{r}{n - r + 1}$. Equality is rare -- only for $\mathcal{A} = \emptyset$ or $X\rsubs$. What happens in between? \begin{center} \includegraphics[width=0.6\linewidth]{images/2092a36e55894d5d.png} \end{center} In other words, given $|\mathcal{A}|$, how should we choose $\mathcal{A} \subset X\rsubs$ to minimise $|\shadow \mathcal{A}|$? Believable that if $|\mathcal{A}| = {k \choose r}$ then we sholud take $\mathcal{A} = [k]\rsubs$. What if ${k \choose r} < |\mathcal{A}| < {k + 1 \choose r}$? Believable that should take $[k]\rsubs$ plus some \glspl{rset} in $[k + 1]\rsubs$. For example, for $\mathcal{A} \subset X\rsubs$ with $|\mathcal{A}| = {8 \choose 3} + {4 \choose 2}$, take $\mathcal{A} = [8]\rsubs[3] \cup \{9 \cup B : B \in [4]\rsubs[2]\}$. \subsection{Two total orders on $X^{(r)}$} Let $A$ and $B$ be distinct \glspl{rset}: say $A = a_1, \ldots, a_r$, $B = b_1, \ldots, b_r$ where $a_1 < \cdots < a_r$ and $b_1 < \cdots < b_r$. \glsnoundefn{lex}{lexicographic}{NA}% Say that $A < B$ in the \emph{lexicographic} (or \emph{lex}) ordering if for some $j$ we have $a_i = b_i$ for $i < j$ and $a_j < b_j$. Slogan: ``Use small elements'' (``dictionary order''). \begin{example*} \Gls{lex} on $[4]\rsubs[2]$: $12, 13, 14, 23, 24, 34$. \Gls{lex} on $[6]\rsubs[3]$: $123, 124, 125, 126, 134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 256, 345$, $346, 356, 456$. \end{example*} \glsnoundefn{colex}{colexicographic}{NA}% Say that $A < B$ in the \emph{colexicographic} (or colex) ordering if for some $j$ we have $a_i = b_i$ for all $i > j$ and $a_j < b_j$. Slogan: ``Avoid large elements'' (note that this is not quite the same as ``use small elements'', which is what we had before). \begin{example*} \Gls{colex} on $[4]\rsubs[2]$: $12, 13, 23, 14, 24, 34$. \Gls{colex} on $[6]\rsubs[3]$: $123, 124, 134, 234, 125, 135, 235, 145, 245, 345, 126, 136, 236, 146, 246, 346$, $156, 256, 356, 456$. \end{example*} Note that, in \gls{colex}, $[n - 1]\rsubs[r]$ is an initial segment (first $t$ elements, for some $t$) of $[n]\rsubs[r]$. This is \emph{false} for lex. So we could view \gls{colex} as an enumeration of $\Nbb\rsubs[r]$. \begin{remark*} $A < B$ in \gls{colex} if and only if $A^c < B^c$ in ``\gls{lex} with ground set order reversed''. \end{remark*} \textbf{Aim:} \gls{colex} initial segments are best for $\shadow$, i.e. if $\mathcal{A} \subset X\rsubs$ and $\mathcal{C} \subset X\rsubs$ is the initial segment of \gls{colex} with $|\mathcal{C}| = |\mathcal{A}|$, then $|\shadow \mathcal{C}| \le |\shadow \mathcal{A}|$. In particular, $|\mathcal{A}| = {k \choose r} \implies |\shadow \mathcal{A}| \ge {k \choose r - 1}$. \subsection{Compressions} \textbf{Idea:} try to transform $\mathcal{A} \subset X\rsubs$ into some $A' \subset X\rsubs$ such that: \begin{enumerate}[(i)] \item $|\mathcal{A}'| = |\mathcal{A}|$. \item $|\shadow \mathcal{A}'| \le |\shadow \mathcal{A}|$. \item $\mathcal{A}'$ looks more like' $\mathcal{C}$ than $\mathcal{A}$ did. \end{enumerate} Ideally, we'd like a family of such `compressions': $\mathcal{A} \to \mathcal{A}' \to \mathcal{A}'' \to \mathcal{A}''' \to \cdots \to \mathcal{B}$ such that either $\mathcal{B} = \mathcal{C}$ or $\mathcal{B}$ is so similar to $\mathcal{C}$ that we can directly check that $|\shadow \mathcal{B}| \ge |\shadow \mathcal{C}|$.