%! TEX root = Combi.tex % vim: tw=50 % 15/10/2024 09AM \begin{fcthm}[Sperner's Lemma] \label{sperner} % Theorem 1 Assuming: - $\mathcal{A} \subset \powset X$ is an \gls{antichain} Then: $|\mathcal{A}| \le {n \choose \left\lfloor \frac{n}{2} \right\rfloor }$. \end{fcthm} \textbf{Idea:} Motivated by ``a \gls{chain} meets each layer in $\le 1$ point, because a layer is an \gls{antichain}'', we will try to decompose the cube into \glspl{chain}. \begin{center} \includegraphics[width=0.2\linewidth]{images/21baed414ea34d70.png} \end{center} \begin{proof} We'll decompose $\powset X$ into ${n \choose \half n}$ \glspl{chain} -- then done. To achieve this, it is sufficient to find: \begin{enumerate}[(i)] \item For each $r < \frac{n}{2}$, a matching from $X\rsubs$ to $X\rsubs[r + 1]$ (recall that a matching here means a set of disjoint edges, one for each point in $X\rsubs$). \item For each $r \ge \frac{n}{2}$, a matching from $X\rsubs$ to $\rsubs[r - 1]$. \end{enumerate} We then put these together to form our \glspl{chain}, each passing through $X\rsubs[\halfn]$. \begin{center} \includegraphics[width=0.6\linewidth]{images/732344e403874cf8.png} \end{center} By taking complements, it is enough to prove (i). Let $G$ be the (bipartite) subgraph of $\Q_n$ spanned by $X\rsubs \cup X\rsubs[r + 1]$: we seek a matching from $X\rsubs$ to $X\rsubs[r + 1]$. For any $S \subset X\rsubs$, the number of $S-\Gamma(S)$ edges in $G$ is $|S|(n - r)$ (counting from below) and $\le |\Gamma(S)| (r + 1)$ (counting from above). \begin{center} \includegraphics[width=0.6\linewidth]{images/3dfaeab3a06f48cb.png} \end{center} Hence, as $r < \frac{n}{2}$, \[ |\Gamma(S)| \ge \frac{|S|(n - r)}{r + 1} \ge |S| .\] Thus by Hall's Marriage theorem, there exists a matching. \end{proof} Equality in \nameref{sperner}? Proof above tells us nothing. \textbf{Aim:} If $\mathcal{A}$ is an \gls{antichain} then \[ \sum_{r = 0}^{n} \frac{| \mathcal{A} \cap X\rsubs|}{{n \choose r}} \le 1 .\] \begin{center} \includegraphics[width=0.2\linewidth]{images/395cae44c8e24ed3.png} \end{center} ``The percentages of each layer occupied add up to $\le 1$.'' Trivially implies \nameref{sperner} (think about it). \begin{fcdefn}[Shadow] \glsnoundefn{shad}{shadow}{shadows}% \glssymboldefn{shadow}% For $\mathcal{A} \subset X\rsubs$ ($1 \le r \le n$), the \emph{shadow} of $\mathcal{A}$ is $\partial \mathcal{A} = \partial^- \mathcal{A} \subset X\rsubs[r - 1]$ defined by, $\partial \mathcal{A} = \{B \in X\rsubs[r - 1] : \exists A \in \mathcal{A}, B \subset A\}$. \end{fcdefn} \begin{example*} If $\mathcal{A} = \{123, 124, 134, 137\} \subset X\rsubs[3]$, then $\shadow A = \{12, 13, 23, 14, 24, 34, 17, 37\} \subset X\rsubs[2]$. \end{example*} \begin{fcprop}[Local LYM] \label{local_lym} Assuming: - $\mathcal{A} \subset X\rsubs$ - $1 \le r \le n$ Then: \[ \frac{|\shadow \mathcal{A}|}{{n \choose r - 1}} \ge \frac{|\mathcal{A}|}{{n \choose r}} .\] \end{fcprop} ``The fraction of the level occupied by $\shadow \mathcal{A}$ is $\ge$ the fraction for $\mathcal{A}$''. \begin{remark*} LYM = Lubell, Meshalkin, Yamamoto. \end{remark*} \begin{proof} The number of $\mathcal{A}-\shadow \mathcal{A}$ edges in $\Q_n$ is $| \mathcal{A}| r$ (counting from above) and is $\le |\shadow \mathcal{A}|(n - r + 1)$ (counting from above). So \[ \frac{|\shadow \mathcal{A}|}{| \mathcal{A}|} \ge \frac{r}{n - r + 1} .\] But $\frac{{n \choose r - 1}}{{n \choose r}} = \frac{r}{n - r + 1}$, so done. \end{proof} Equality in \nameref{local_lym}? Must have that $\forall A \in \mathcal{A}$, $\forall i \in A$, $\forall j \notin A$ have $A - \{i\} \cup \{j\} \in A$. So $A = \emptyset$ or $X\rsubs$. \begin{fcthm}[LYM Inequality] \label{lym_ineq} Assuming: - $\mathcal{A} \subset \powset X$ is an \gls{antichain} Then: \[ \sum_{r = 0}^{n} \frac{| \mathcal{A} \cap X\rsubs|}{{n \choose r}} \le 1 .\] \end{fcthm} \begin{notation*} \glssymboldefn{intr}% We will now start writing $\mathcal{A}_r$ for $\mathcal{A} \cap X\rsubs$. \end{notation*} \begin{proof}[Proof 1] ``Bubble down with \nameref{local_lym}''. Have $\frac{| \mathcal{A}_n|}{{n \choose n}} \le 1$. Now, $\shadow \mathcal{A}\intr[n]$ and $\mathcal{A}\intr[n - 1]$ disjoint (as $\mathcal{A}$ is an \gls{antichain}), so \[ \frac{|\shadow \mathcal{A}\intr[n]|}{{n \choose n - 1}} + \frac{| \mathcal{A}\intr[n - 1]|}{{n \choose n - 1}} = \frac{|\shadow \mathcal{A}\intr[n] \cup \mathcal{A}\intr[n - 1]}{{n \choose n - 1}} \le 1 ,\] whence \[ \frac{| \mathcal{A}\intr[n]|}{{n \choose n}} + \frac{| \mathcal{A}\intr[n - 1]|}{{n \choose n - 1}} \le 1 \] by \nameref{local_lym}. Now, note $\shadow(\shadow \mathcal{A}\intr[n] \cup \mathcal{A}\intr[n - 1])$ is disjoint from $\mathcal{A}\intr[n - 2]$ (since $\mathcal{A}$ is an \gls{antichain}), so \[ \frac{|\shadow (\shadow \mathcal{A}\intr[n] \cup \mathcal{A}\intr[n - 1])|}{{n \choose n - 2}} + \frac{| \mathcal{A}\intr[n - 2]|}{{n \choose n - 2}} \le 1 ,\] whence \[ \frac{|\shadow \mathcal{A}\intr[n] \cup \mathcal{A} \intr[n - 1]|}{{n \choose n - 1}} + \frac{| \mathcal{A} \intr[n - 2]|}{{n \choose n - 2}} .\] (\nameref{local_lym}) so \[ \frac{| \mathcal{A}\intr[n]|}{{n \choose n}} + \frac{| \mathcal{A}\intr[n - 1]|}{{n \choose n - 1}} + \frac{| \mathcal{A}\intr[n - 2]|}{{n \choose n - 2}} \le 1 .\] Continue inductively. \end{proof} Equality in \nameref{lym_ineq}? Must have had equality in each use of \nameref{local_lym}. Hence equality in \nameref{lym_ineq} needs: max $r$ with $\mathcal{A}\intr \neq \emptyset$ has $\mathcal{A}\intr = X\rsubs$. So: equality in \nameref{local_lym} $\iff$ $\mathcal{A} = X\rsubs$ for some $r$. Hence: equality in \nameref{sperner} if and only if $\mathcal{A} = X\rsubs{\frac{n}{2}}$ (if $n$ even), and $\mathcal{A} = X\rsubs[\halfn]$ or $\mathcal{A} = X\rsubs[\left\lceil \frac{n}{2} \right\rceil]$.