%! TEX root = Combi.tex % vim: tw=50 % 28/11/2024 09AM Remarkably, cannot beat linear. \begin{fcprop}[] \label{prop_3_3} % Proposition 3.3 Assuming: - $r$ is odd - $A \subset X\rsubs$ such that $|x \cap y|$ for each distinct $x, y \in A$ Then: $|A| \le n$. \end{fcprop} \textbf{Idea:} Find $|A|$ linearly independent vectors in a vector space of dimension $n$, namely $\Q_n$. \begin{proof} View $\powset X$ as $\Zbb_2^n$, the $n$-dimensional space over $\Zbb_2$ (the field of order $2$). By identifying $x$ with $\ol{x}$, its characteristic sequence (e.g. $1011000 \ldots$ for $\{1, 3, 4\}$). We have $(\ol{x}, \ol{x}) \neq 0$ for each $x$, as $r$ is odd ($(\blank, \blank)$ is the usual dot-product). Also, $(\ol{x}, \ol{y}) = 0$ for distinct $x, y \in A$ (as $|x \cap y|$ even). Hence the $\ol{x}$, $x \in A$ are linearly independent (if $\sum \lambda_i \ol{x_i} = 0$, dot with $\ol{x_j}$ to get $\lambda_j = 0$). \end{proof} \begin{remark*} Hence also if $A \subset X\rsubs$, $r$ even, with $|x \cap y|$ odd for all distinct $x, y \in A$, then $|A| \le n + 1$ -- just add $n + 1$ to each $x \in A$ and apply \cref{prop_3_3} with $X = [n + 1]$. \end{remark*} Does this modulo $2$ behaviour generalise? Now show: $s$ allowed values for $|x \cap y|$ modulo $p$ implies $|A| \le$ polynomial of degree $s$. \begin{fcthm}[Frankl-Wilson Theorem] \label{thm_3_4} % Theorem 3.4 Assuming: - $p$ is prime - $\lambda_1, \ldots, \lambda_s$ ($s \le r$) - $\lambda_i \not\equiv r \pmod p$ for each $i$ - $A \subset X\rsubs$ such that for all distinct $x, y \in A$ have $|x \cap y| \equiv \lambda_i \pmod p$ for some $i$ Then: $|A| \le {n \choose s}$. \end{fcthm} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item This bound is a \emph{polynomial} in $S$ (as $r$ vares)! \item Bound is essentially best possible: can achieve $|A| = {n \choose n - r + s} \sim {n \choose s}$ (see picture). \begin{center} \includegraphics[width=0.6\linewidth]{images/2d9c58afc5a04284.png} \end{center} \item Do need no $\lambda_i \equiv r \pmod p$. Indeed, if $n = a + \lambda p$ ($0 \le a \le p - 1$) then can have $A \subset\rsubs[a + kp]$ with $|A| = {\lambda \choose k}$ (not a polynomial in $n$, as we can choose any $k$) and all $|x \cap y| \equiv a \pmod p$. \begin{center} \includegraphics[width=0.6\linewidth]{images/502742f6a72f4cd7.png} \end{center} \end{enumerate} \end{remark*} \textbf{Idea:} Try to find $|A|$ linearly independent points in a vector space of dimension ${n \choose s}$, by somehow ``applying the polynomial $(t - \lambda_1) \cdots (t - \lambda_s)$ to $|x \cap y|$''. \begin{proof} For each $i \le j$, let $M(i, j)$ be the ${n \choose i} \times {n \choose j}$ matrix, with rows indexed by $X\rsubs[i]$, columns indexed by $X\rsubs[j]$, with \[ M(i, j)_{xy} = \begin{cases} 1 & \text{if $x \subset y$} \\ 0 & \text{otherwise} \end{cases} \] for each $x \in X\rsubs[i]$, $y \in X\rsubs[j]$. \begin{center} \includegraphics[width=0.4\linewidth]{images/9b1dc4629c6740aa.png} \end{center} Let $V$ be the vector space (over $\Rbb$) spanned by the rows of $M(s, r)$. So $\dim V \le {n \choose s}$. For $i \le s$, consider $M(i, s) M(s, r)$ (note each row belongs to $V$, as we \emph{premultiplied} $M(s, r)$ by a matrix). For $x \in X\rsubs[i]$, $y \in X\rsubs[r]$: \begin{align*} (M(i, s) M(s, r))_{xy} &= \text{\# of $s$-sets $z$ with $x \subset z$ and $z \subset y$} \\ &= \begin{cases} 0 & \text{if $x \not \subset y$} \\ {r - i \choose s - i} & \text{if $x \subset y$} \end{cases} \end{align*} So \[ M(i, s) M(s, r) = {r - i \choose s - i} M(i, r) \] so all rows of $M(i, r)$ belong to $V$. Let $M(i) = M(i, r)^\top M(i, r)$ (note each row is in $V$). For $x, y \in X\rsubs$, have \begin{align*} M(i)_{xy} &= \#\text{$i$-sets $z$ with $z \subset x$, $z \subset y$} \\ &= {|x \cap y| \choose i} \end{align*} Write the integer polynomial $(t - \lambda_1) \cdots (t - \lambda_s)$ as $\sum_{i = 0}^{s} a_i {t \choose i}$, with $a_i \in \Zbb$ -- possible because $t(t - 1) \cdots (t - i + 1) = i! {t \choose i}$. Let $M = \sum_{i = 0}^{s} a_i M\rsubs[i]$ (each row is in $V$). Then for all $x, y \in X\rsubs$: \[ M_{xy} = \sum_{i} a_i {|x \cap y| \choose i} = (|x \cap y| - \lambda_i) \cdots (|x \cap y| - \lambda_s) .\] So the submatrix of $M$ spanned by the rows and columns corresponding to the elements of $A$ is \[ \begin{pmatrix} \not\equiv 0 & 0 & \cdots & 0 \\ 0 & \not\equiv 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \not\equiv 0 \end{pmatrix} .\] Hence the rows of $M$ corresponding to $A$ are linearly independent over $\Zbb_p$, so also over $\Zbb$, so also over $\Qbb$, so also over $\Rbb$. So $|A| \le \dim V \le {n \choose s}$. \end{proof}