%! TEX root = Combi.tex % vim: tw=50 % 26/11/2024 09AM % Example Class: Friday, 1:30PM, MR3 % Hand in Q4, Q8 by 5pm Wednesday % Also hand in last part of last question -- "And % what if $\mathcal{A} \subset \Nbb^{(r)}$?" \begin{remark*} Very few isoperimetric inequalities are known (even approximately). For example, ``isoperimetric in a layer'' -- in the graph $X\rsubs$, with $x, y$ joined if $|x \cap y| = r - 1$ (i.e. $d(x, y) = 2$ in $\Q_n$). \begin{center} \includegraphics[width=0.3\linewidth]{images/91ee5b97fec1440b.png} \end{center} This is open. Nicest special case is $r = \frac{n}{2}$, where it is conjectured that balls are best -- i.e. sets of the form $\{x \in [r]\rsubs : |x \cap [r]| \ge t\}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/e9660efb73684aa6.png} \end{center} \end{remark*} \newpage \section{Intersecting Families} \subsection{$t$-intersecting families} \glsadjdefn{tint}{$t$-intersecting}{subset}% $A \subset \powset X$ is called \emph{$t$-intersecting} if $|x \cap y| \ge t$ for all $x, y \in A$. How large can a $t$-intersecting family be? \begin{example*} $t = 2$. Could take $\{x : 1, 2 \in x\}$ -- has size $\quarter 2^n$. Or $\{x : |x| \ge \frac{n}{2} + 1\}$ -- has size $\sim \half 2^n$. \begin{center} \includegraphics[width=0.3\linewidth]{images/c8d2064ea95a4bdf.png} \end{center} \end{example*} \begin{fcthm}[Katona's $t$-intersecting Theorem] \label{thm_3_1} % Theorem 3 1 Assuming: - $A \subset \powset X$ is \gls{tint} - $n + t$ even (to make the proof simpler -- same proof works for odd) Then: $|A| \le |X^{\left( \ge \frac{n + t}{2} \right)}|$. \end{fcthm} \begin{proof} For any $x, y \in A$: have $|x \cap y| \ge t$, so $d(x, y^c) \ge t$. So, writing $\ol{A}$ for $\{y^c : y \in A\}$, have $d(A, \ol{A}) \ge t$ -- i.e. $A_{\ineigh{t - 1}}$ disjoint from $\ol{A}$. Suppose that $|A| > \left|X^{\left( \ge \frac{n + t}{2} \right)}\right|$. Then, by \nameref{harper}, we have \[ |A_{\ineigh{t - 1}}| \ge \left|X^{\left( \ge \frac{n + t}{2} - (t - 1) \right)}\right| = \left|X^{\left( \ge \frac{n - t}{2} + 1 \right)}\right| .\] But $A_{\ineigh{t - 1}}$ disjoint from $\ol{A}$, which has size $> \left|X^{\left( \le \frac{n - t}{2} \right)}\right|$ contradicting $|A_{\ineigh{t - 1}}| + |\ol{A}| \le 2^n$. \end{proof} What about \gls{tint} $A \subset X\rsubs$? Might guess: best is $A_0 = \{x \in X\rsubs : [t] \subset x\}$. Could also try $A_\alpha = \{x \in X\rsubs : |x \cap [t + 2\alpha]| \ge t + \alpha\}$, for $\alpha = 1, 2, \ldots, r - t$. \begin{example*} For \glsref[tint]{$2$-intersecting} in: \begin{itemize} \item $[7]\rsubs[4]$: $|A_0| = {5 \choose 2} = 10$, $|A_1| = 1 + {4 \choose 3} {3 \choose 1} = 13$, $|A_2| = {6 \choose 4} = 15$. \item $[8]\rsubs[4]$: $|A_0| = {6 \choose 2} = 15$, $|A_1| = 1 + {4 \choose 3} {4 \choose 1} = 17$, $|A_2| = {6 \choose 4} = 15$. \item $[9]\rsubs[4]$: $|A_0| = {7 \choose 2} = 21$, $|A_1| = 1 + {4 \choose 3} {5 \choose 1} = 21$, $|A_2| = {6 \choose 4} = 15$. \end{itemize} Note that $|A_0|$ grows quadratically, $|A_1|$ linearly, and $|A_2|$ constant -- so $|A_0|$ largest of these for $n$ large. \begin{center} \includegraphics[width=0.6\linewidth]{images/5f6d2464e1604ae4.png} \end{center} \end{example*} \begin{fcthm}[] \label{thm_3_2} % Theorem 3 2 Assuming: - $A \subset X\rsubs$ is \gls{tint} Then: for $n$ sufficiently large, we have $|A| \le |A_0| = {n - t \choose r - t}$. \end{fcthm} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item Bound we get on $n$ would be $(16r)^r$ (crude) or $2tr^3$ (careful). \item Often called the ``second Erd\H{o}s-Ko-Rado Theorem''. \end{enumerate} \end{remark*} \textbf{Idea of proof:} ``$A_0$ has $r - t$ degrees of freedom''. \begin{proof} Extending $A$ to a \emph{maximal} \gls{tint} family, we must have some $x, y \in A$ with $|x \cap y| = t$ (if not, then by maximality have that $\forall x \in A$, $\forall i \in x$, $\forall j \notin x$, have $x \cup j - i \in A$ -- whence $A = X\rsubs$, contradiction). May assume that there exists $z \in A$ with $x \cap y \not\subset z$ -- otherwise all $z \in A$ have $x \cap y \subset z$. Whence $|A| \le {n - t \choose r - t} = |A_0|$. \begin{center} \includegraphics[width=0.3\linewidth]{images/9db16e0778bc4e0f.png} \end{center} So each $w \in A$ must meet $x \cup y \cup z$ in $\ge t + 1$ points. Thus \[ |A| \le \ub{2^{3r}}_{\text{\scriptsize $w$ on $x \cup y \cup z$}} \left( \ub{{n \choose r - t - 1} + {n \choose r - t - 2} + \cdots + {n \choose 0}}_{\text{$w$ off $x \cup y \cup z$}} \right) .\] Note that the right hand side is a polynomial of degree $r - t - 1$ -- so eventually beaten by $|A_0|$. \end{proof} \subsection{Modular Intersections} For intersecting families, we ban $|x \cap y| = 0$. What if we banned $|x \cap y| \equiv 0 \pmod{\text{something}}$? \begin{example*} Want $A \subset X\rsubs$ with $|x \cap y|$ odd for all distinct $x, y \in A$? Try $r$ odd: can achieve $|A| = {\left\lfloor \frac{n - 1}{2} \right\rfloor \choose \frac{r - 1}{2}}$, by picture. \begin{center} \includegraphics[width=0.6\linewidth]{images/d4658c850a094e87.png} \end{center} What if, still for $r$ odd, had $|x \cap y|$ even for all distinct $x, y \in A$? Can achieve $n - r + 1$, by picture. \begin{center} \includegraphics[width=0.6\linewidth]{images/5acfcb9bdabd447e.png} \end{center} This is only linear in $n$. Can we improve this? Similarly if $r$ even: For $|x \cap y|$ even for all $x, y \in A$, can achieve $|A| = {\left\lfloor \frac{n}{2} \right\rfloor \choose \frac{r}{2}}$ -- picture \begin{center} \includegraphics[width=0.6\linewidth]{images/66dc860d00344298.png} \end{center} But for $|x \cap y|$ odd for all $x, y \in A$ (distinct): can achieve $n - r + 1$ (as above). Can we improve this? Seems to be that banning $|x \cap y| = r \pmod 2$ forces the family to be \emph{very} small (polynomial in $n$, in fact a linear polynomial). \end{example*}