%! TEX root = Combi.tex % vim: tw=50 % 21/11/2024 09AM % Second example class: MR2, Friday 8 days, 1:30PM Note that if $A = [a] \times [k]^{n - d}$. Then $|\bounde A| = da^{d - 1} k^{n - d} = d |A|^{1 - \frac{1}{d}} k^{\frac{n}{d} - 1}$. \begin{fcthm}[] \label{thm_2_13} % Theorem 2 13 Assuming: - $A \subset [k]^n$ - $|A| \le \frac{k^n}{2}$ Then: \[ |\bounde A| \ge \min \{d|A|^{1 - \frac{1}{d}} k^{\frac{n}{d} - 1} : 1 \le d \le n\} .\] \end{fcthm} ``Some set of the form $[a]^d \times [k]^{n - d}$ is best.'' Called the ``edge-isoperimetric inequality in the grid''. \nonexaminableon \begin{proof}[Proof (sketch)] Induction on $n$. $n = 1$ is trivial. Given $A \subset [k]^n$ with $|A| \le \frac{k^n}{2}$, where $n > 1$: Wlog $A$ is a down-set (just down-compress, i.e. stamp on your set in direction $i$ for each $i$). For any $1 \le i \le n$, define $C_i(A) \subset [k]^n$ by giving its \sects i: \[ C_i(A)_{\isec t} = \text{extremal set of size $|A_{\isec t}|$ in $[k]^{n - 1}$} ,\] which will be a set of the form $[a]^d \times [k]^{n - 1 - d}$, or a complement. Write $B = C_i(A)$. Do we have $|\bounde B| \le |\bounde A|$? \begin{center} \includegraphics[width=0.3\linewidth]{images/a5f69b5b65e94135.png} \end{center} Now, $A$ is a down-set, so \[ |\bounde A| = \ub{|\bounde A_{\isec 1}| + \cdots + |\bounde A_{\isec k}|}_{\text{horizontal edges}} + \ub{|A_{\isec 1}| - |A_{\isec k}|}_{\text{vertical edges}} \] and \[ |\bounde B| = |\bounde B_{\isec 1}| + \cdots + |\bounde B_{\isec k}| + ? \] The $?$ is because $B$ not a down-set, as extremal sets in dimension $n - 1$ are not nested. Indeed, can have $|\bounde B| > |\bounde A|$: \begin{center} \includegraphics[width=0.6\linewidth]{images/94c2f4ef18984bf2.png} \end{center} \textbf{Idea:} try to introduce a ``fake'' boundary $\partial'$: want $\partial' A \le \bounde A$, with $\partial' = \bounde$ on extremal sets, such that $C_i$ \emph{does} decrease $\partial'$ (then done). Try $\partial' A = \sum_t |\bounde A_{\isec t}| + |A_{\isec 1}| - |A_{\isec k}|$. Then $\partial' A \le |\bounde A|$ for all $A$, equality for extremal sets (as equality for any down-set) and $\partial' C_i(A) \le \partial' A$. But: fails for $C_j(A)$ for all $j \neq i$. Could try to fix this by defining $\partial'' A = \sum_i (|A_{\isec 1}^{(i)}| - |A_{\isec k}^{(i)}|)$. Also fails -- for example if $A$ is the ``outer shell'' of $[k]^n$ then $\partial'' A = 0$. So far, have \begin{align*} |\bounde A| &\ge \partial' A \\ &\ge \partial' B \\ &= \sum_t |\bounde B_{\isec t}| + |B_{\isec 1}| - |B_{\isec k}| \\ &= \sum_t f(|B_{\isec t}|) + |B_{\isec 1}| - |B_{\isec k}| \end{align*} where $f$ is the extremal function in $[k]^{n - 1}$. Now, $f$ is the pointwise minimum of some functions of the form $c x^{1 - \frac{1}{d}}$ and $c(k^{n - 1}-x)^{1 - \frac{1}{d}}$ -- each of which is a concave function. Hence $f$ itself is a concave function. \begin{center} \includegraphics[width=0.6\linewidth]{images/7130c518d5904ea0.png} \end{center} Consider varying $|B_{\isec 2}|, \ldots, |B_{\isec{k - 1}}|$, keeping $|B_{\isec 2}| + \cdots + |B_{\isec{k - 1}}|$ constant and keeping $|B_{\isec 1}| \ge |B_{\isec 2}| \ge \cdots \ge |B_{\isec{k - 1}}| \ge |B_{\isec k}|$. We obtain $\partial' B \ge \partial' C$, where for some $\lambda$, \[ C_{\isec t} = \begin{cases} B_{\isec 1} & \forall 1 \le t \le \lambda \\ B_{\isec k} & \forall \lambda + 1 \le t \le k \end{cases} \] So: \begin{align*} |\bounde A| &= \partial' A \\ &\ge \partial' B \\ &\ge \partial' C \\ &= \lambda f(|B_{\isec 1}|) + (k - \lambda) f(|B_{\isec k}|) + |B_{\isec 1}| - |B_{\isec k}| \end{align*} but $C$ is still not a down-set. Now vary, $|B_{\isec 1}|$, keeping $\lambda |B_{\isec 1}| + (k - \lambda)|B_{\isec k}|$ fixed ($\lambda$ fixed) and $|B_{\isec 1}| \ge |B_{\isec k}|$. This is a concave function of $|B_{\isec 1}|$ -- as concave + concave + linear. Hence ``make $|B_{\isec 1}|$ as small or large as possible''. i.e. $\partial' C \ge \partial' D$, where one of the following holds: \begin{itemize} \item $D_{\isec t} = D_{\isec 1}$ for all $t$ \item $D_{\isec t} = D_{\isec 1}$ for all $t \le \lambda$, $D_{\isec t} = \emptyset$ for all $t > \lambda$ \item $D_{\isec t} = [k]^{n - 1}$ for all $t \le \lambda$, $D_{\isec t} = D_{\isec k}$ for all $t > \lambda$. \end{itemize} But (miraculously), this $D$ is a down-set! \begin{center} \includegraphics[width=0.6\linewidth]{images/420e0d46dde147b9.png} \end{center} Hence \[ |\bounde A| = \partial' A \ge \partial' B \ge \partial' C \ge \partial' D = |\bounde D| .\] So our ``compression in direction $i$'' is: $A \mapsto D$. Now finish as before. \end{proof} \begin{remark*} To make this precise, work instead in $[0, 1]^n$ (and then take a discrete approximation at the end). \end{remark*} \nonexaminableoff