%! TEX root = Combi.tex % vim: tw=50 % 19/11/2024 09AM Let $r = \min \{|x| : x \notin B\}$ and $s = \max \{|x| : x \notin B\}$. May assume $r \le s$, since $r = s + 1$ implies $B = \{x : |x| \le r - 1\}$ would imply $B = C$. \begin{center} \includegraphics[width=0.3\linewidth]{images/80315eaef8d1429a.png} \end{center} If $r = s$: then $\{x : |x| \le r - 1\} \subset B \subset \{x : |x| \le r\}$. So clearly $|\neigh(B)| \ge |\neigh(C)|$. \begin{center} \includegraphics[width=0.3\linewidth]{images/5eb2b654b21e430f.png} \end{center} If $r < s$: cannot have $\{x : |x| = s\} \subset B$, because then also $\{x : |x| = r\} \subset B$ (as $B$ is a down-set). \begin{center} \includegraphics[width=0.3\linewidth]{images/7824622ec62d4bb0.png} \end{center} So there exists $y, y'$ with $|y| = |y'| = s$, $y \in B$, $y' \notin B$ and $y' = y \pm (e_1 - e_2)$ ($e_1 = (1, 0)$, $e_2 = (0, 1)$). Similarly, cannot have $\{x : |x| = r\} \cap B = \emptyset$, because then $\{x : |x| = s\} \cap B = \emptyset$ (as $B$ is a down-set). So there exists $x, x'$ with $|x| = |x'| = r$, $x \notin B$, $x' \in B$ and $x' = x \pm (e_1 - e_n)$. Now let $B' = B \cup \{x\} - \{y\}$. From $B$ we lost $\ge 1$ point in the neighbourhood (namely $z$ in the picture), and gained $\le 1$ point (the only point that we can possibly gain is $w$), so $|\neigh(B')| \le |\neigh(B)|$. This contradicts minimality of $B$. This finishes the two dimensional case. \textbf{Case 2:} $n \ge 3$. For any $1 \le i \le n - 1$ and any $x \in B$ with $x_n > 1$, $x_i < k$. Have $x - r_n + e_i \in B$ (as $B$ is \glsref[gridiced]{$j$-compressed} for any $j$, so apply with some $j \neq i, n$). So, considering the \sects n of $B$, we have $\neigh(B_{\isec t}) \subset B_{\isec{t - 1}}$ for all $t = 2, \ldots, k$. \begin{center} \includegraphics[width=0.6\linewidth]{images/dc7732ccf1b14158.png} \end{center} Recall that $\neigh(B)_{\isec t} = \neigh(B_{\isec t}) \cup B_{\isec{t + 1}} \cup B_{\isec{t - 1}}$. So in fact $\neigh(B)_{\isec t} = B_{\isec{t - 1}}$ for all $t \ge 2$. Thus \[ |\neigh(B)| = \ub{|B_{\isec{k - 1}}|}_{\text{level $k$}} + \ub{|B_{\isec{k - 2}}|}_{\text{level $k - 1$}} + \cdots + \ub{|B_{\isec 1}|}_{\text{level 2}} + \ub{|\neigh(B_{\isec 1})|}_{\text{level 1}} = |B| - |B_{\isec k}| + |\neigh(B_{\isec 1})| .\] Similarly, \[ |\neigh(C)| = |C| - |C_{\isec k}| + |\neigh(C_{\isec 1})| .\] So to show $|\neigh(C)| \le |\neigh(B)|$, enough to show that $|B_{\isec k}| \le |C_{\isec k}|$ and $|B_{\isec 1}| \ge |C_{\isec 1}|$. $|B_{\isec k}| \le |C_{\isec k}|$: define a set $D \subset [k]^n$ as follows: put $D_{\isec k} = B_{\isec k}$, and for $t = k - 1, k - 2, \ldots, 1$ set $D_{\isec t} = \neigh(D_{\isec t - 1})$. Then $D \subset B$, so $|D| \le |B|$. Also, $D$ is an initial segment of \gls{simpordk}. So in fact $D \subset C$, whence $|B_{\isec k}| = |D_{\isec k}| \le |C_{\isec k}|$. $|B_{\isec 1}| \ge |C_{\isec 1}|$: define a set $E \subset [k]^n$ as follows: put $E_{\isec 1} = B_{\isec 1}$ and for $t = 2, 3, \ldots, k$ set $E_{\isec t} = \{x \in [k]^{n - 1} : \neigh(\{x\}) \subset E_{\isec{t - 1}}\}$ ($E_{\isec t}$ is the biggest it could be given $\neigh(E_{\isec t}) \subset E_{\isec t}$). Then $E \supset B$, so $|E| \ge |B|$. Also, $E$ is an initial segment of \gls{simpordk}. So $E \supset C$, whence $|B_{\isec 1}| = |E_{\isec 1}| \ge |C_{\isec 1}|$. \end{proof} \begin{corollary} \label{coro_2_12} % Corollary 2 12 Let $A \subset [k]^n$ with $|A| \ge |\{x : |x| \le n\}|$. Then $|A_{\ineigh{t}}| \ge |\{x : |x| \le r + t\}|$ for all $t$. \end{corollary} \begin{remark*} Can check from \cref{coro_2_12} that, for $k$ fixed, the sequence $([k]^n)_{n = 1}^\infty$ is a \gls{lf}. \end{remark*} \subsection{The edge-isoperimetric inequality in the grid} Which set $A \subset [k]^n$ (of given size) should we take to minimise $|\bounde A|$? \begin{example*} In $[k]^n$: \begin{center} \includegraphics[width=0.6\linewidth]{images/0bd421e26ca34b62.png} \end{center} Suggests squares are best. \end{example*} However... \begin{center} \includegraphics[width=0.6\linewidth]{images/e8eaaa3a7bee4751.png} \end{center} So we have ``phase transitions'' at $|A| = \frac{k^2}{4}$ and $\frac{3k^2}{4}$ -- extremal sets are \emph{not} nested. This seems to rule out all our compression methods. And in $[k]^3$? \begin{align*} [a]^3 (\text{cube}) &\leadsto [a]^2 \times [k] (\text{square column}) \\ &\leadsto [a] \times [k]^2 (\text{half space}) \\ &\leadsto \text{complement of square column} \\ &\leadsto \text{complement of cube} \end{align*} So in $[k]^n$, up to $|A| = \frac{k^n}{2}$, we get $n - 1$ of these phase transitions!