%! TEX root = Combi.tex % vim: tw=50 % 14/11/2024 09AM \begin{remark*} Vital in the proof of \cref{thm_2_8}, and of \cref{harper}, that the extremal sets (in dimension $n - 1$) were nested. \end{remark*} \glssymboldefn{inum}% The \emph{isoperimetric} number of a graph $G$ is \[ i(G) = \min \left\{ \frac{|\bounde A|}{|A|} : A \subset G, \frac{|A|}{|G|} \le \half \right\} .\] $\frac{|\bounde A|}{|A|}$ is the ``average out-degree of $|A|$''. \begin{corollary} \label{coro_2_10} % Corollary 10 $\inum(\Q_n) = 1$. \end{corollary} \begin{proof} Taking $A = \powset{n - 1}$, we show $\inum(\Q_n) \le 1$ (as $\frac{|\bounde A|}{|A|} = \frac{2^{n - 1}}{2^n} = \half$). To show $\inum(\Q_n) \ge \half$, just need to show that if $C$ is an initial segment of binary with $|C| \le 2^{n - 1}$ then $|\bounde C| \ge |C|$. But $C \subset \powset{n - 1}$, so certainly $|\bounde C| \ge |C|$. \end{proof} \subsection{Inequalities in the grid} \glsnoundefn{grid}{grid}{grids}% For any $k = 2, 3, \ldots$, the \emph{grid} is the graph on $[k]^n$ in which $x$ is joined to $y$ if for some $i$ we have $x_j = y_j$ for all $j \neq i$ and $|x_i - y_i| = 1$. ``distance is $l_1$-distance''. \begin{example*} $[4]^2$ \begin{center} \includegraphics[width=0.3\linewidth]{images/c76e4d732dec4749.png} \end{center} \end{example*} Note that for $k = 2$ this is exactly $\Q_n$. Do we have analogues of \cref{harper} and \cref{thm_2_8} for the \gls{grid}? Starting with vertex-isoperimetric: which sets $A \subset [k]^n$ (of given size) minimise $|\neigh(A)|$? \begin{example*} In $[k]^2$: \begin{center} \includegraphics[width=0.6\linewidth]{images/61a641e320b94e40.png} \end{center} For $A$: $|\bound(A)| \sim r \sim \sqrt{2|A|}$. For $B$: $|\bound(B)| = 2r = 2\sqrt{|B|}$. \end{example*} This suggests we ``go up in levels'' according to $|x| = \sum_{i = 1}^{n} |x_i|$ -- e.g. we'd take $\{x \in [k]^n : |x| \le r\}$. What if $|\{x \in [k]^n : |x| \le r\}| < |A| < |\{x \in [k]^n : |x| \le r + 1\}$? Guess: take $A = \{x \in [k]^n : |x| \le r\}$ plus some points with $|x| = r + 1$, but which points? \begin{example*} In $[k]^3$: \begin{center} \includegraphics[width=0.3\linewidth]{images/ad5658e028034110.png} \end{center} so ``keep $x_1$ large''. \end{example*} \glsnoundefn{simpordk}{simplicial order}{simplicial ordering}% This suggests in the \emph{simplicial order} on $[k]^n$, we set $x < y$ if either $|x| < |y|$ or $|x| = |y|$ and $x_i > y_i$, where $i = \min,cbj : x_j \neq y_j\}$. \begin{note*} Agrees with the previous definition of \gls{simpord} when $k = 2$. \end{note*} \begin{example*} On $[3]^2$: $(1,1)$, $(2,1)$, $(1,2)$, $(1,1)$, $(2, 2)$, $(1, 3)$, $(3, 2)$, $(2, 3)$, $(3, 3)$. \begin{center} \includegraphics[width=0.3\linewidth]{images/9efbb6b7704c4181.png} \end{center} On $[4]^3$: $(1, 1, 1)$, $(2, 1, 1)$, $(1, 2, 1)$, $(1, 1, 2)$, $(3, 1, 1)$, $(2, 2, 1)$, $(2, 1, 2)$, $(1, 3, 1)$, $(1, 2, 2)$, $(1, 1, 3)$, $(4, 1, 1)$, $(3, 2, 1)$, \ldots \end{example*} \glsnoundefn{isec}% For $A \subset [k]^n$ ($n \ge 2$), and $1 \le i \le n$, the \emph{$i$-sections} of $A$ are the sets $A_1, \ldots, A_k$ (or $A_1^{(i)}, \ldots, A_k^{(i)}$) as a subset of $[k]^{n - 1}$ defined by: \[ A_t = \{x \in [k]^{n - 1} : (x_1, x_2, \ldots, x_{i - 1}, t, x_i, x_{i + 1}, \ldots, x_{n - 1}) \in A\} ,\] for each $1 \le t \le k$. \begin{center} \includegraphics[width=0.3\linewidth]{images/50d4e3b8997f4787.png} \end{center} \glssymboldefn{isec}% \glssymboldefn{gridCi}% The \emph{$i$-compression} of $A$ is $C_i(A) \subset [k]^n$ is defined by giving its $i$-sections: \[ C_i(A)_{\isec t} = \text{initial segment of $[k]^{n - 1}$ of size $|A_{\isec t}|$, for each $1 \le t \le k$} .\] Thus $|\gridCi(A)| = |A|$. \glsadjdefn{gridiced}{$i$-compressed}{family}% Say $A$ is \emph{$i$-compressed} if $\gridCi(A) = A$. \begin{fcthm}[Vertex-isoperimetric inequality in the grid] \label{thm_2_11} % Theorem 11 Assuming: - $A \subset [k]^n$ - $C$ is the initial segment of \gls{simpordk} on $[k]^n$ with $|C| = |A|$ Then: $|\neigh(C)| \le |\neigh(A)|$. In particular, if $|A| \ge |\{x : |x| \le r\}|$ then $|\neigh(A)| \ge |\{x : |x| \le r + 1\}|$. \end{fcthm} \begin{proof} Induction on $n$. For $n = 1$ it is trivial: if $A \subset [k]^1 \neq \emptyset, [k]^1$, then $|\neigh(A)| \ge |A| + 1 = |\neigh(C)|$. Given $n > 1$ and $A \subset [k]^n$: fix $1 \le i \le n$. \textbf{Claim:} $|\neigh(\gridCi(A)| \le |\neigh(A)|$. Proof of claim: write $B$ for $\gridCi(A)$. For any $1 \le t \le k$, we have \[ \neigh(A)_{\isec t} = \ub{\neigh(A_{\isec t})}_{\text{from $x_i = t$}} \cup \ub{A_{\isec{t - 1}}}_{\text{from $x_i = t - 1$}} \cup \ub{A_{\isec{t + 1}}}_{\text{from $x_i = t + 1$}} .\] \begin{center} \includegraphics[width=0.3\linewidth]{images/50d4e3b8997f4787.png} \end{center} (where $A_0, A_{k + 1} = \emptyset$). Also, \[ \neigh(B)_{\isec t} = \neigh(B_{\isec t}) \cup B_{\isec{t - 1}} \cup B_{\isec{t + 1}} .\] Now, $|B_{\isec{t - 1}}| = |A_{\isec{t - 1}}|$ and $|B_{\isec{t + 1}}| = |A_{\isec{t + 1}}|$, and $|\neigh(B_{\isec t})| \le |\neigh(A_{\isec t})|$ (induction hypothesis). But the sets $B_{\isec{t - 1}}$, $B_{\isec{t + 1}}$, $\neigh(B_{\isec t})$ are nested (as each is an initial segment of \gls{simpordk} on $[k]^{n - 1}$). Hence $|\neigh(B)_{\isec t}| \le |\neigh(A)_{\isec t}|$ for each $t$. Thus $|\neigh(B)| \le |\neigh(A)|$. Among all $B \subset [k]^n$ with $|B| = |A|$ and $|\neigh(B)| \le |\neigh(A)|$, pick one that minimises the quantity $\sum_{x \in B} \text{position of $x$ in \gls{simpordk}}$. Then $B$ is \gls{gridiced} for all $i$. Note however, that this time we will make use of this minimality property of $B$ for more than just deducing that $B$ is \gls{gridiced} for all $i$. \textbf{Case 1:} $n = 2$. What we know is precisely that $B$ is a down-set ($A \subset [k]^n$ is a \emph{down-set} if $x \in A$, $y_i \le x_i ~\forall i \implies y \in A$) \begin{center} \includegraphics[width=0.3\linewidth]{images/7ae72066fa3c4783.png} \end{center}