%! TEX root = Combi.tex % vim: tw=50 % 12/11/2024 09AM \subsection{Edge-isoperimetric inequalities} \glsnoundefn{edgeb}{edge-boundary}{edge-boundaries}% \glssymboldefn{bounde}% For a subset $A$ of vertices of a graph $G$, the \emph{edge-boundary} of $A$ is \[ \partial_e A = \partial A = \{xy \in E : x \in A, y \notin A\} .\] \begin{center} \includegraphics[width=0.3\linewidth]{images/9b769489a5c14552.png} \end{center} An inequality of the form: $|\bounde A| \ge f(|A|)$ for all $A \subset G$ is an \emph{edge-isoperimetric inequality} on $G$. What happens in $\Q_n$? Given $|A|$, which $A \subset \Q_n$ should we take, to minimise $|\bounde A|$? \begin{example*} $|A| = 4$ in $\Q_3$: \begin{center} \includegraphics[width=0.6\linewidth]{images/e2a9c7bb8538460a.png} \end{center} \end{example*} This suggests that maybe subcubes are best. What if $A \subset \Q_n$? with $2^k < |A| < 2^{k + 1}$? Natural to take $A = \powset{[k]} \cup \{\text{some stuff containing $k + 1$}\}$. Suppose we are in $\Q_4$, and considering $|A| > 2^3$, eg $|A| = 12$. We might take the whole of the bottom layer, and then stuff in the upper layer. Note that the size of the boundary will be the number of up edges (which is $12 - 2^3$, a constant), plus the number of edges in the top layer. So we just want to minimise the number of edges in the top layer, i.e. find $A' \subset \Q_3$ with $|A'|$ with minimal boundary. \begin{center} \includegraphics[width=0.6\linewidth]{images/6bff501fb86d425c.png} \end{center} So we define: for $x, y \in \Q_n$, $x \neq y$, say $x < y$ in the \emph{binary ordering} on $\Q_n$ if $\max x \Delta y \in y$. Equivalently, $x < y$ if and only if $\sum_{i \in x} 2^i < \sum_{i \in y} 2^i$. ``Go up in subcubes''. \begin{example*} In $\Q_3$: $\emptyset, 1, 2, 12, 3, 13, 23, 123$. \end{example*} \glssymboldefn{Bi}% \glsadjdefn{ibced}{$i$-binary compressed}{set}% For $A \subset \Q_n$, $1 \le i \le n$, we define the \emph{$i$-binary compression} $B_i(A) \subset \Q_n$ by giving its $i$-sections: \begin{align*} (B_i(A))_-^{(i)} &= \text{initial segment of binary on $\powset{X - i}$ of size $|A_-^{(i)}|$} \\ (B_i(A))_+^{(i)} &= \text{initial segment of binary on $\powset{X - i}$ of size $|A_+^{(i)}|$} \end{align*} so $|B_i(A)| = |A|$. Say $A$ is \emph{$i$-binary compressed} if $B_i(A) = A$. \begin{center} \includegraphics[width=0.6\linewidth]{images/f690153b7d4e4bcd.png} \end{center} \begin{fcthm}[Edge-isoperimetric inequality in $Q_n$] \label{thm_2_8} % Theorem 2 8 Assuming: - $A \subset \Q_n$ - let $C$ the initial segment of binary on $\Q_n$ with $|C| = |A|$ Then: $|\bounde C| \le |\bounde A|$. In particular: if $|A| = 2^k$ then $|\bounde A| \ge 2^k(n - k)$. \end{fcthm} \begin{remark*} Sometimes called the ``Theorem of Harper, Lindsey, Bernstein \& Hart''. \end{remark*} \begin{proof} Induction on $n$. $n = 1$ trivial. For $n > 1$, $A \subset \Q_n$, $1 \le i \le n$: \textbf{Claim:} $|\bounde \Bi(A)| \le |\bounde A|$. Proof of claim: write $B$ for $\Bi(A)$. .image Have \begin{picmath} |\bounde A| = \ub{|\bounde (A_-)|}_{\text{downstairs}} + \ub{|\bounde (A_+)|}_{\text{upstairs}} + \ub{|A_+ \Delta A_-|}_{\text{across}} \end{picmath} Also \[ |\bounde B| = |\bounde (B_-)| + |\bounde (B_+)| + |B_+ \Delta B_-| .\] Now, $|\bounde (B_-)| \le |\bounde (A_-)|$ and $|\bounde(B_+)| \le |\bounde(A_+)|$ (induction hypothesis). Also, the sets $B_+$ and $B_-$ are nested (one is contained inside the other), as each is an initial segment of binary on $\powset{X - i}$. Whence we certainly have $|B_+ \Delta B_-| \le |A_+ \Delta A_-|$. So $|\bounde B| \le |\bounde A|$. Define a sequence $A_0, A_1, \ldots \subset \Q_n$ as follows: set $A_0 = A$. Having defined $A_0, \ldots, A_k$, if $A_k$ is \gls{ibced} for all $n$ then stop the sequence with $A_k$. If not, choose $i$ with $\Bi(A) \neq A$ and put $A_{k + 1} = \Bi(A_k)$. Must terminate, as the function $k \mapsto \sum_{x \in A_k} (\text{position of $x$ in binary})$ is strictly decreasing. The final family $B = A_k$ satisfies $|B| = |A|$, $|\bounde B| \le |\bounde A|$, and $B$ is \gls{ibced} for all $i$. Note that $B$ need \emph{not} be an initial segment of binary, for example $\{\emptyset, 1, 2, 3\} \subset \Q_3$. However: \begin{fclemma}[] % Lemma 2.9 Assuming: - $B \subset \Q_n$ is \gls{ibced} for all $i$ - $B$ not an initial segment of binary Then: $B = \powset{n - 1} - \{1, 2, 3, \ldots, n - 1\} \cup \{n\}$ (``downstairs minus the last point, plus the first upstairs point''). \end{fclemma} \begin{center} \includegraphics[width=0.6\linewidth]{images/5fe1964251d742ba.png} \end{center} (Then done, as clearly $|\bounde B| \ge |\bounde C|$, since $C = \powset{n - 1}$). \begin{proof} As $B$ not an initial segment, there exists $x < y$ with $x \notin B$, $y \in B$. Then for all $i$: cannot have $i \in x, y$, and cannot have $i \notin x, y$ (as $B$ is \gls{ibced}). Thus for each $y \in B$, there exists at most 1 earlier $x \notin B$ (namely $x = y^c$). Also for each $x \notin B$ there is at most one later $y \in B$ (namely $y = x^c$). Then $x$ and $y$ adjacent (since $y$ is the unique element in $B$ after $x$, and $x$ is the unique element not in $B$ before $y$). So $B = \{z : z \le y\} - \{x\}$, where $x$ is the predecessor of $y$ and $y = x^c$. So must have $y = \{n\}$. \end{proof} This concludes the proof of \cref{thm_2_8}. \end{proof}