%! TEX root = Combi.tex % vim: tw=50 % 10/10/2024 09AM % Plan: % Chapter 1: Set systems % Chapter 2: Isoperimetric inequalities % Chapter 3: Intersecting families % 3 examples sheets / 3 examples classes % Books: % 1. Combinatorics, Bollob\'as, C.U.P (1986). % Covers chapters 1 and 2. Very clear, easy to % read. % 2. Combinatorics of finite sets, Anderson, O.U.P % (1987). Chapter 1. % Course = what is on the board \newpage \section{Set Systems} \begin{fcdefn}[Set system] \glsnoundefn{ssystem}{set system}{set systems} Let $X$ be a set. A \emph{set system} on $X$ (or a \emph{family of subsets of $X$}) is a family $\mathcal{A} \subset \powset X$. \end{fcdefn} \begin{notation*} \glsnoundefn{rset}{$r$-set}{$r$-sets} We will use the notation \[ X^{(r)} = \{A \subset X : |A| = r\} .\] We call an element of $X\rsubs$ an $r$-set. We will usually be using $X = [n] = \{1, \ldots, n\}$, so $|X\rsubs| = {n \choose r}$. \end{notation*} \begin{example*} \[ [4]\rsubs[2] = \{12, 13, 14, 23, 24, 34\} .\] \end{example*} \begin{fcdefn}[Discrete cube] \glsnoundefn{dcube}{discrete cube}{discrete cubes} \glssymboldefn{dcubeQn} %{$Q_n$}{$Q_n$} Make $\powset X$ into a graph by joining $A$ and $B$ if $|A \symmdiff B| = 1$, i.e. if $A = B \cup \{i\}$ for some $i$, or vice versa. We call this ths \emph{discrete cube} $Q_n$ (if $X = [n]$). \end{fcdefn} \begin{example*} $\Q_3$: \begin{center} \includegraphics[width=0.2\linewidth]{images/7574d50a51ab4407.png} \end{center} In general: \begin{center} \includegraphics[width=0.7\linewidth]{images/ace31118117a4ae4.png} \end{center} \end{example*} Alternatively, can view $\Q_n$ as an $n$-dimensional unit cube $\{0, 1\}^n$, by identifying e.g. $\{1, 3\}$ with $1010000\ldots 0$ (i.e. identify $A$ with $\indicator{A}$, the characteristic function of $A$). \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/c404887130cf4215.png} \end{center} \end{example*} \begin{fcdefn}[Chain] \glsnoundefn{chain}{chain}{chains} Say $\mathcal{A} \subset \powset X$ is a \emph{chain} if $\forall A, B \in \mathcal{A}$, either $A \subset B$ or $B \subset A$. \end{fcdefn} \begin{center} \includegraphics[width=0.2\linewidth]{images/f4aebc423eac42a2.png} \end{center} \begin{example*} For example, \[ \mathcal{A} = \{23, 12357, 123567\} \] is a \gls{chain}. \end{example*} \begin{fcdefn}[Antichain] \glsnoundefn{antichain}{antichain}{antichains} Say $\mathcal{A}$ is an \emph{antichain} if $\forall A, B \in \mathcal{A}$, $A \neq B$, we have $A \not\subset B$. \end{fcdefn} \begin{center} \includegraphics[width=0.2\linewidth]{images/7b8832f22baf45ff.png} \end{center} How large can a \gls{chain} be? Can achieve $|\mathcal{A}| = n + 1$, for example using \[ \mathcal{A} = \{\emptyset, 1, 12, 123, \ldots, [n]\} .\] Cannot beat this: for each $0 \le r \le n$, $\mathcal{A}$ contains $\le 1$ \gls{rset}. How large can an \gls{antichain} be? Can achieve $|\mathcal{A}| = n$, for example $\mathcal{A} = \{1, 2, \ldots, n\}$. More generally, can take $\mathcal{A} = X\rsubs$, for any $r$ -- best out of these is $X\rsubs[\left\lfloor \frac{n}{2} \right\rfloor]$. Can we beat this?