%! TEX root = CT.tex % vim: tw=50 % 30/10/2024 09AM For the second triangular identity, we have \begin{picmath} \begin{tikzcd} G \ar[r, "\alpha_G"] \ar[rd, "\identity{G}", swap] & GFG \ar[r, "(GFG\beta)^{-1}"] \ar[d, "\alpha_G^{-1}"] & GFGFG \ar[d, "(GF\alpha_G)^{-1} = (\alpha_{GFG})^{-1}"] \\ & G \ar[r, "(G\beta)^{-1}"] \ar[rd, "\identity{G}", swap] & GFG \ar[d, "G\beta"] \\ & & G\beta \end{tikzcd} \end{picmath} Hence by \cref{thm:3.7} we have $(F \adjoint G)$. But $(\beta')^{-1}$ and $\alpha^{-1}$ also satisfy the triangular identities for and \gls{adjunc} $(G \adjoint F)$. \end{proof} \begin{fclemma}[] \label{lemma:3.9} % Lemma 3.9 Assuming: - $(F : \mathcal{C} \to \mathcal{D} \adjoint G : \mathcal{D} \to \mathcal{C})$ an \gls{adjunc} with \gls{counit} $\eps$ Thens:[(i)] - $G$ is \gls{faith} if and only if $\eps$ is \gls{pws} \gls{epic} - $G$ is \gls{full} and \gls{faith} if and only if $\eps$ is an isomorphism \end{fclemma} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item Given $g : B \to C$ in $\mathcal{D}$, $g\eps_B$ corresponds to $Gg$ under the \gls{adjunc}. So $\eps_B$ \gls{epic} if and only if $G$ acts injectively on morphisms with domain $B$ and specified codomain. Hence $\eps_B$ \gls{epic} for all $B$ if and only if $G$ is \gls{faith}. \item Similarly, $G$ \gls{full} and \gls{faith} if and only if for all $B$ and $C$ composition with $\eps_B$ is a bijection $\mathcal{D}(B, C) \to \mathcal{D}(FGB, C)$. This happens if and only if $\eps_b : FGB \to B$ is an isomorphism for all $B$. \qedhere \end{enumerate} \end{proof} \begin{fcdefn}[Reflection] \glsnoundefn{reflon}{reflection}{reflections}% \glsadjdefn{refliv}{reflective}{subcategory}% \glsnoundefn{reflsub}{reflective subcategory}{reflective subcategories}% % Definition 3.10 By a \emph{reflection}, we mean an \gls{adjunc} such that the \gls{radj} is \gls{full} and \gls{faith} (equivalently: the \gls{counit} is an isomorphism). % satisfying the conditions of % \cref{lemma:3.9}(ii). We say $\mathcal{D} \subseteq \mathcal{C}$ is a \emph{reflective subcategory} if it's \gls{full} and the inclusion $\mathcal{D} \to \mathcal{C}$ has a \gls{ladj}. \end{fcdefn} \begin{example} \label{eg:3.11} % Example 3.11 \phantom{} \begin{enumerate}[(a)] \item $\AbGp$ is \gls{refliv} in $\Gp$: the \gls{ladj} to the inclusion sends $G$ to $G / G'$ where $G'$ is the subgroup generated by commutators. Any homomorphism $G \to A$ with $A$ abelian factors uniquely through the quotient map $G \to G / G'$. \item Recall that a group $G$ is \emph{torsion} if all elements have finite order, and \emph{torsion free} if its only element of finite order is $1$. In an abelian group $A$, the torsion leements form a subgroup $A_t$, and $A \mapsto A_t$ is \gls{radj} to the inclusion $\mathbf{tAbGp} \to \AbGp$, since any homomorphism $B \to A$ whose $B$ is torsion takes values in $A_t$. Similarly, $A \mapsto A / A_t$ defines a \gls{ladj} to the inclusion $\mathbf{tfAbGp} \to \AbGp$. \item Let $\mathbf{KHaus} \subseteq \Top$ be the full sub\gls{cat} of compact Hausdorff spaces. $\mathbf{KHaus}$ is \gls{refliv} in $\Top$: the \gls{ladj} is the \emph{Stone-\v{C}ech compactification} $\beta$. \item Let $\mathbf{Seq} \subseteq \Top$ be the \gls{full} sub\gls{cat} of \emph{sequential spaces}, i.e. those in which all sequentially closed sets are closed. The inclusion $\mathbf{Seq} \to \Top$ has a \gls{radj} sending $X$ to $X_s$, the same set as $X$ with all sequentially closed sets declared to be closed. The identity mapping $X_s \to X$ is (continuous, and) the \gls{counit} of the \gls{adjunc}. \item The \gls{cat} $\mathbf{Preord}$ of preordered sets is \gls{refliv} in $\Cat$: the \gls{reflon} sends $\mathcal{C}$ to $\mathcal{C} / \simeq$ where $\simeq$ is the congruence identifying all paralell pairs in $\mathcal{C}$. \item Given a topological space $X$, the poset $\Omega(X)$ of open subsets of $X$ is co\gls{refliv} in $\mathcal{P}(X)$, since if $U$ is open and $A \subseteq X$ is arbitrary, we have $U \subseteq A$ if and only if $U \subseteq A^\circ$ (recall ${}^\circ$ denotes interior). Dually, the poset of closed subsets is \gls{refliv} in $\mathcal{P}(X)$. \end{enumerate} \end{example} \newpage \section{Limits} \begin{fcdefn}[Diagram] \glsnoundefn{diag}{diagram}{diagrams}% \glsnoundefn{vert}{vertex}{vertices}% \glsnoundefn{edge}{edge}{edges}% % Definition 4.1 Let $J$ be a \gls{cat} (almost always small, and often finite). By a \emph{diagram of shape $J$} in a \gls{cat} $\mathcal{C}$, we mean a \gls{func} $D : J \to \mathcal{C}$. The objects $D(j)$, $j \in \ob J$ are called \emph{vertices} of $D$, and morphisms $D(\alpha)$, $\alpha \in \mor J$ are called \emph{edges} of $D$. \end{fcdefn} For example, if $J$ is the \gls{cat} \begin{picmath} \begin{tikzcd} \bullet \ar[r] \ar[d] \ar[rd] & \bullet \ar[d] \\ \bullet \ar[r] & \bullet \end{tikzcd} \end{picmath} a \gls{diag} of shape $J$ is a commutative square in $\mathcal{C}$. If $J$ is instead \begin{picmath} \begin{tikzcd} \bullet \ar[r] \ar[d] \ar[rd, shift left=3pt] \ar[rd, shift right=3pt] & \bullet \ar[d] \\ \bullet \ar[r] & \bullet \end{tikzcd} \end{picmath} then a \gls{diag} of shape $J$ is a not-necessarily-commutative square. \begin{fcdefn}[Cone, limit] \glssymboldefn{cone}% \glsnoundefn{cone}{cone}{cones}% \glsnoundefn{lim}{limit}{limits}% \glsnoundefn{colim}{colimit}{colimits}% % Definition 4.2 Let $D : J \to \mathcal{C}$ be a \gls{diag}. A \emph{cone} over $D$ consists of an object $A$ (its \emph{apex}) together with morphisms $\lambda_j : A \to D(j)$ for each $j \in \ob J$ (the \emph{legs} of the cone) such that \begin{picmath} \begin{tikzcd} & A \ar[ld, "\lambda_j", swap] \ar[rd, "\lambda_{j'}"] \\ D(j) \ar[rr, "D(\alpha)", swap] & & D(j') \end{tikzcd} \end{picmath} commutes for each $\alpha : j \to j'$ in $J$. A morphism of cones $(A, (\lambda_j \mid j \in \ob J)) \to (B, (\mu_j \mid j \in \ob J))$ is a morphism $f : A \to B$ such that $\mu_j f = \lambda_j$ for all $j$. We have a \gls{cat} $\mathbf{Cone}(D)$ of cones over $D$; a \emph{limit} for $D$ is a terminal object of $\mathbf{Cone}(D)$. Dually, a \emph{colimit} for $D$ is an initial cone under $D$. \end{fcdefn} \begin{center} \includegraphics[width=0.6\linewidth]{images/1c0e65bc11344a0d.png} \end{center} \glssymboldefn{Deltadiag}% If $\Delta : \mathcal{C} \to \funccat[J, \mathcal{C}]$ is the \gls{func} sending $A$ to the \emph{constant diagram} with all \glspl{vert} $A$ then a cone over $D$ is a \gls{natt} $\Delta A \to D$. Also, $\Cone(D)$ is another name for $(\Delta \darr D)$, defined as in \cref{thm:3.3}${}^\op$. So by \cref{thm:3.3}, $C$ has \glspl{lim} for all \glspl{diag} of shape $J$ if and only if $\Delta$ has a \gls{radj}.