%! TEX root = CT.tex % vim: tw=50 % 28/10/2024 09AM \begin{proof} First suppose $(F \adjoint G)$. For each $A \in \ob \mathcal{C}$, let $\eta_A : A \to GFA$ be the morphism corresponding to $\identity{FA} : FA \to FA$. Then $(FA, \eta_A)$ is an \gls{iobj} of $(A \darr G)$: given any $f : A \to GB$, the diagram \begin{picmath} \begin{tikzcd} A \ar[r, "\eta_A"] \ar[rd, "f", swap] & GFA \ar[d, "Gg"] \\ & GB \end{tikzcd} \end{picmath} commutes if and only if $g$ corresponds to $f$ under the \gls{adjunc}, by \gls{naty} of the \gls{adjunc} bijection. So there's a unique morphism $(FA, \eta_A) \to (B, f)$ in $(A \darr G)$. Conversely, suppose given in \gls{iobj} $(FA, \eta_A)$ in $(A \darr G)$ for each $A$. We make $F$ into a function $\mathcal{C} \to \mathcal{D}$: given $A \stackrel{f}{\to} B$, $Ff$ is the unique morphism $(FA, \eta_A) \to (FB, \eta_B f)$ in $(A \darr G)$. \glsref[funcal]{Functoriality} comes from uniqueness: given $B \stackrel{g}{\to} C$, $(Fg)(Ff)$ and $F(gf)$ are both morphisms $(FA, \eta_A) \to (FC, \eta_C gf)$ in $(A \darr G)$. The \gls{adjunc} bijection sends $A \stackrel{f}{\to} GB$ to the unique morphism $(FA, \eta_A) \to (B, f)$ in $(A \darr G)$, with inverse sending $FA \stackrel{g}{\to} B$ to $(Gg) \eta_A : A \to GB$. This is natural in $A$ since $\eta$ is a \gls{natt} $\identity{\mathcal{C}} \to GF$ and natural in $B$ since $G$ is \gls{funcal}. \end{proof} \begin{fccoro}[] \label{coro:3.4} % Corollary 3.4 Assuming: - $F$ and $F'$ are both \gls{ladj} to $G : \mathcal{D} \to \mathcal{C}$ Then: there is a canonical natural isomorphism $\alpha : F \to F'$. \end{fccoro} \begin{proof} $(FA, \eta_A)$ and $(F'A, \eta_A')$ are both \gls{initial} in $(A \darr G)$, so there's a unique isomorphism $\alpha_A$ between them. $\alpha$ is natural: given $A \stackrel{f}{\to} B$, $(F'f) \alpha_A$ and $\alpha_B (Ff)$ are both morphisms $(FA, \eta_A) \to (F'B, \eta_B' f)$ in $(A \darr G)$, so they're equal. \end{proof} As a result of this, we will often talk about ``the'' \gls{ladj} of a \gls{func} (when it exists), because we don't usually care about which one in the isomorphism class we use. \begin{fclemma}[] \label{lemma:3.5} % Lemma 3.5 Assuming: - $\mathcal{C} \funcslr FG \mathcal{D} \funcslr HK \mathcal{E}$ - $(F \adjoint G)$ and $(H \adjoint K)$ Then: $(HF \adjoint GK)$. \end{fclemma} \begin{proof} Given $A \in \ob \mathcal{C}$, $C \in \ob \mathcal{E}$, we have bijections between morphisms $HFA \to C$, morphisms $FA \to KC$, and morphisms $A \to GKC$ which are both natural in $A$ and $C$, $D$. \end{proof} \begin{fccoro}[] \label{coro:3.6} % Corollary 3.6 Assuming: - the diagram \begin{picmath} \begin{tikzcd} \mathcal{C} \ar[r, "F"] \ar[d, "G"] & \mathcal{D} \ar[d, "H"] \\ \mathcal{E} \ar[r, "K"] & \mathcal{F} \end{tikzcd} \end{picmath} is a commutative square of \glspl{cat} and \glspl{func} - all the \glspl{func} have \glspl{ladj} Then: the square of \glspl{ladj} commutes up to natural isomorphism. \end{fccoro} \begin{proof} By \cref{lemma:3.5}, both ways round are \gls{ladj} to $HF = KG$, so by \cref{coro:3.4} they're isomorphic. \end{proof} \glsnoundefn{unit}{unit}{units}% \glsnoundefn{counit}{counit}{counits}% We saw in \cref{thm:3.3} that an \gls{adj} $(F \adjoint G)$ gives rise to a natural transformation $\eta : \identity{\mathcal{C}} \to GF$, called the \emph{unit} of the \gls{adjunc}. Dually, we have $\eps : FG \to \identity{\mathcal{D}}$, the \emph{counit} of $(F \adjoint G)$. \begin{fcthm}[] \label{thm:3.7} % Theorem 3.7 Assuming: - $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ are \glspl{func} Then: specifying an \gls{adjunc} $(F \adjoint G)$ is equivalent to specifying a \gls{natt} $\eta : \identity{\mathcal{C}} \to GF$ and $\eps : FG \to \identity{\mathcal{D}}$ satisfying the two commutative diagrams: \begin{picmath} \begin{tikzcd} F \ar[r, "F\eta"] \ar[rd, "\identity{F}", swap] & FGF \ar[d, "\eps_F"] \\ & F \end{tikzcd} \qquad \text{and} \qquad \begin{tikzcd} G \ar[r, "\eta_G"] \ar[rd, "\identity{G}", swap] & GFG \ar[d, "G\eps"] \\ & G \end{tikzcd} \end{picmath} \end{fcthm} \begin{proof} Suppose $(F \adjoint G)$. We defined $\eta$ in the proof of \cref{thm:3.3}, and $\eps$ is defined dually. Since $\eps_{FA}$ corresponds to $\identity{GFA}$, the composite $\eps_{FA}(F\eta_A)$ corresponds to $\identity{GFA} \eta_A = \eta_A$. But by definition $\identity{FA}$ corresponds to $\eta_A$. The other identity is dual. Conversely, suppose given $\eta$ and $\eps$ satisfying the triangular identities. Given $FA \stackrel{f}{\to} B$, we define $\Phi(f) = (Gf)\eta_A : A \to GFA \to GB$. Dually, given $A \stackrel{g}{\to} GB$, we define $\Psi(g) = \eps_B(Fg)$. Then $\Psi \Phi(f) = \Psi((Gf)\eta_A) = \eps_B (FGf) F\eta_A = f(\eps_{FA})(F\eta_A) = f$, and dually $\Phi\Psi(g) = g$. \glsref[naty]{Naturality} of $\Phi$ and $\Psi$ follows from \gls{naty} of $\eta$ and $\eps$. \end{proof} In \cref{defn:1.9}, we had \glspl{nati} $\alpha : \identity{\mathcal{C}} \to GF$ and $\beta : FG \to \identity{\mathcal{D}}$. These look like the \gls{unit} and \gls{counit} of an \gls{adjunc} $(F \adjoint G)$: do they satisfy the triangular identities? No, but we can always change them: \begin{fcprop}[] % Proposition 3.8 Assuming: - $F : \mathcal{C} \to \mathcal{D}$, $G : \mathcal{D} \to \mathcal{C}$, $\alpha : \identity{\mathcal{C}} \to GF$ and $\beta : FG \to \identity{\mathcal{D}}$ be an \gls{equivc} of \glspl{cat} as defined in \cref{defn:1.9} Then: there exist isomorphisms $\alpha' : \identity{\mathcal{C}} \to GF$ and $\beta' : FG \to \identity{\mathcal{D}}$ satisfying the triangular identities. In particular, $(F \adjoint G \adjoint F)$. \end{fcprop} \begin{proof} We define $\alpha' = \alpha$ and take $\beta'$ to be the composite \[ FG \stackrel{(FG\beta)^{-1}}{\to} FGFG \stackrel{(F\alpha_G)^{-1}}{\to} FG \stackrel{\beta}{\to} \identity{\mathcal{D}} .\] Note that $FG\beta = \beta_{FG}$, since \begin{picmath} \begin{tikzcd} FGFG \ar[r, "FG\beta"] \ar[d, "\beta_{FG}"] & FG \ar[d, "\beta"] \\ FG \ar[r, "\beta"] & \identity{\mathcal{D}} \end{tikzcd} \end{picmath} commutes by \gls{naty} of $\beta$, and $\beta$ is \gls{monic}. Similarly, $GF\alpha = \alpha_{GF}$. To verify the triangular identities, consider \begin{picmath} \begin{tikzcd} F \ar[r, "F\alpha"] \ar[rd, "\identity{F}", swap] & FGF \ar[r, "(\beta_{FGF})^{-1}"] \ar[d, "F_\alpha^{-1}"] & FGFGF \ar[d, "(F\alpha_{GF})^{-1} = (FGF\alpha)^{-1}"] \\ & F \ar[r, "(\beta_F)^{-1}"] \ar[rd, "\identity{F}", swap] & FGF \ar[d, "\beta_F"] \\ & & F \end{tikzcd} \end{picmath} which commutes by \gls{naty} of $\beta^{-1}$.