%! TEX root = CT.tex % vim: tw=50 % 25/10/2024 09AM \newpage \section{Adjunctions} \begin{fcdefn}[Adjunction, D. Kan 1958] \glssymboldefn{adjoint}% \glsnoundefn{adj}{adjoint}{adjoints}% \glsnoundefn{ladj}{left adjoint}{left adjoints}% \glsnoundefn{radj}{right adjoint}{right adjoints}% \glsnoundefn{adjunc}{adjunction}{adjunctions}% % Definition 3.1 Let $\mathcal{C}$ and $\mathcal{D}$ be \glspl{cat}. An \emph{adjunction} between $\mathcal{C}$ and $\mathcal{D}$ consists of \glspl{func} $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ together with, for each $A \in \ob \mathcal{C}$ and $B \in \ob \mathcal{D}$, a bijection between morphisms $FA \to B$ in $\mathcal{D}$ and morphisms $A \to GB$ in $\mathcal{C}$, which is natural in $A$ and $B$. (If $\mathcal{C}$ and $\mathcal{D}$ are \gls{locsm}, this means that $\mathcal{D}(F\bullet, \bullet)$ and $\mathcal{C}(\bullet, G\bullet)$ are \gls{natyi} \glspl{func} $\mathcal{C}^\op \times \mathcal{D} \to \Set$.) We say $F$ is \emph{left adjoint} to $G$, or $G$ is \emph{right adjoint} to $F$, and we write $(F \dashv G)$. \end{fcdefn} \begin{example} \label{eg:3.2} % Example 3.2 \phantom{} \begin{enumerate}[(a)] \item The free \gls{func} $F : \Set \to \Gp$ is \gls{ladj} to the forgetful \gls{func} $\Gp \stackrel{U}{\to} \Set$. By definition, homomorphisms $FA \to G$ correspond to functions $A \to UG$; \gls{naty} in $A$ was built into the definition of $F$ in \cref{eg:1.5}(b) and \gls{naty} in $G$ is immediate. \item The forgetful \gls{func} $U : \Top \to \Set$ has a \gls{ladj} $D$, which equips a set $A$ with its discrete topology since any function $A \to UX$ is continuous as a map $DA \to X$. $U$ also has a \gls{radj} $I$ given by the `ìndiscrete' topology. \item The \gls{func} $\ob : \Cat \to \Set$ has a \gls{ladj} $D$ given by discrete \glspl{cat}, and a \gls{radj} $I$: $IA$ is the \gls{cat} with objects $A$ and morphisms $a \to b$ for each $(a, b)$. $D$ also has a \gls{ladj} $\pi_0$: $\pi_0 \mathcal{C}$ is the set of \emph{connected components} of $\mathcal{C}$, i.e. the quotient of $\ob \mathcal{C}$ by the smallest equivalence relation which identifies $\dom f$ with $\cod f$ for all $f \in \mor \mathcal{C}$. \item Given a set $A$, we can regard $(\bullet) \times A$ as a \gls{func} $\Set \to \Set$. It has a \gls{radj}, namely $\Set(A, \bullet)$. Given $f : B \times A \to C$ we can regard it as a function $\lambda f : B \to \Set(A, C)$ by $\lambda f(b)(a) = f(b, a)$. \glsadjdefn{cc}{cartesian closed}{\gls{cat}}% We call a \gls{cat} $\mathcal{C}$ \emph{cartesian closed} if it has binary \glspl{prod} as defined in \cref{eg:2.6}(f) and each $(\bullet) \times A$ has a \gls{radj} $(\bullet)^A$. For example, $\Cat$ is cartesian clsosed, with $\mathcal{D}^{\mathcal{C}}$ taken to be the $\funccat[\mathcal{C}, \mathcal{D}]$. \item Let $M = \{1, e\}$ be the $2$-element monoid with $e^2 = e$ (and identity $1$). We have a \gls{func} $F : \Set \to \funccat[M, \Set]$ sending $A$ to $(A, \identity{A})$ and a \gls{func} $G : \funccat[M, \Set] \to \Set$ sending $(A, e)$ to $\{a \in A \mid ea = a\}$. We have $(F \adjoint G \adjoint F)$: $(F \adjoint G)$ since any $f : M \to (B, e)$ takes values in $G(B, e)$ and any $g : (B, e) \to FA$ is determined by its restriction to $G(B, e)$ since $g(b) = g(e, b)$. However, note that this is not an \gls{equivc} of \glspl{cat}. \item \glsnoundefn{iobj}{initial object}{initial objects}% \glsnoundefn{tobj}{terminal object}{terminal objects}% \glsadjdefn{initial}{initial}{object}% \glsadjdefn{terminal}{terminal}{object}% Let $\mathbf{1}$ be the \gls{cat} with one object and one morphism (which must the identity on the only object). A \gls{ladj} for the unique \gls{func} $\mathcal{C} \to \mathbf{1}$ picks out an \emph{initial object} of $\mathcal{C}$, i.e. an object such that there is a unique $I \to A$ for each $A \in \ob \mathcal{C}$. Dually, a \gls{radj} for $\mathcal{C} \to \mathbf{1}$ `is' a \emph{terminal object} of $\mathcal{C}$ (a terminal object is an initial object in $\mathcal{C}^\op$). Again, the example of $\Gp$ shows that these two can coincide. \item Suppose given $A \stackrel{f}{\to} B$ in $\Set$. We have order-preserving mappings $Pf : PA \to PB$ and $P^* f : PB \to PA$, and $(Pf \adjoint P^* f$ since $A' \subseteq f^{-1} B' \iff f(A') \subseteq B'$. \item Suppose given a relation $R \subseteq A \times B$. We define $(\bullet)^r : PA \to PB$ and $(\bullet)^l : PB \to PA$ by \begin{align*} (S)^r &= \{b \in B \mid (\forall a \in S) ((a, b) \in R)\} \\ (T)^l &= \{a \in A \mid (\forall b \in T) ((a, b) \in R)\} \end{align*} \glsadjdefn{aor}{adjoint on the right}{\gls{func}}% These are \gls{cont} \glspl{func} and $S \subseteq T^l \iff S \times T \subseteq R \iff T \subseteq S^r$. We say $(\bullet)^r$ and $(\bullet)^l$ are \emph{adjoint on the right}. \item $P^* : \Set^\op \to \Set$ is self-\gls{aor}, since functions $A \to PB$ and functions $B \to PA$ both correspond to relations $R \subseteq A \times B$. \item $(\bullet)^* : \Vect_k^* \to \Vect_k$ is self-\gls{aor}, since linear maps $V \to W^*$ and $W \to V^*$ both correspond to bilinear maps $V \times W \to k$. \end{enumerate} \end{example} \begin{fcthm}[] \label{thm:3.3} \glssymboldefn{darr}% % Theorem 3.3 Assuming: - $G : \mathcal{D} \to \mathcal{C}$ is a \gls{func} - for $A \in \ob \mathcal{C}$, let $(A \downarrow G)$ be the \gls{cat} whose objects are pairs $(B, f)$ where $B \in \ob \mathcal{D}$ and $f : A \to GB$, and whose morphisms $(B, f) \to (B', f')$ are morphisms $g : B \to B'$ making \begin{picmath} \begin{tikzcd} A \ar[r, "f"] \ar[rd, "f'", swap] & GB \ar[d, "Gg"] \\ & GB' \end{tikzcd} \end{picmath} commute. Then: specifying a \gls{ladj} for $G$ is equivalent to specifying an \gls{iobj} of $(A \darr G)$ for each $A$. \end{fcthm}