%! TEX root = CT.tex % vim: tw=50 % 23/10/2024 09AM \begin{lemma}[] % Lemma 2.8 \phantom{} \begin{cenum}[(i)] \item If $\mathcal{C}$ has \glspl{equaler} (i.e. every pair of parallel arrows has an \gls{equaler}), then any \gls{deting} family in $\mathcal{C}$ is \gls{seping}. \item If $\mathcal{C}$ is \gls{bal}, then any \gls{seping} family in $\mathcal{C}$ is \gls{deting}. \end{cenum} \end{lemma} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Suppose $\mathcal{G}$ is a \gls{deting} family, and suppose $A \twofuncs fg B$ satisfy the hypothesis of \cref{defn:2.7}(a). Let $E \stackrel{e}{\to} A$ of $(f, g)$: then any $G \stackrel{h}{\to} A$ with $G \in \mathcal{G}$ factors uniquely through $e$, so $e$ is an isomorphism, so $f = g$. \item Suppose $\mathcal{G}$ is \gls{seping}, and $A \stackrel{f}{\to} B$ satisfies the hypothesis of \cref{defn:2.7}(b). If $C \twofuncs gh A$ satisfy $fg = fh$, then any $G \stackrel{k}{\to} C$ with $G \in \mathcal{G}$ satisfies $gk = hk$, since both are factorisations of $fgk$ through $f$. So $g = h$; hence $f$ is \gls{monic}. Similarly, if $B \twofuncs lm D$ satisfy $lf = mf$, then any $G \stackrel{n}{\to} B$ satisfies $ln = mn$, since it factors through $f$, so $l = m$ and hence $f$ is epic. Since $\mathcal{C}$ is \gls{bal}, $f$ is an isomorphism. \qedhere \end{enumerate} \end{proof} \begin{example} \label{eg:2.9} % Example 2.9 \phantom{} \begin{enumerate}[(a)] \item In $\Set$, $1 = \{*\}$ is a \gls{sep} and a \gls{det}, since $\Set(1, \bullet)$ is isomorphic to the identity \gls{func}. Also, $2 = \{0, 1\}$ is a co\gls{sep} and a co\gls{det}, since it represents $P^* : \Set^\op \to \Set$. \item In $\Gp$ (respectively $\Rng$), $\Zbb$ (respectively $\Zbb[X]$) is a separator and a detector, since it represents the forgetful \gls{func}. But $\Gp$ has no co\gls{sep} or co\gls{det} set: given any set $\mathcal{G}$ of groups, there is a simple group $H$ with $\card H > \card G$ for all $G \in \mathcal{G}$, so the only homomorphisms $H \to G$ with $G \in \mathcal{G}$ are trivial. \item For any \gls{small} \gls{cat} $\mathcal{C}$, the set $\{\mathcal{C}(A, \bullet) \st A \in \ob \mathcal{C}\}$ is \gls{seping} and \gls{deting} in $\funccat[\mathcal{C}, \Set]$. This uses \nameref{yoneda} and \cref{lemma:1.8} (for the detecting case). \item In $\Top$, $1$ is a \gls{sep} since it represents $U : \Top \to \Set$. But $\Top$ has no \gls{deting} set of objects: given a set $\mathcal{G}$ of spaces, choose $\kappa > \card X$ for all $X \in \mathcal{G}$, and let $Y$ and $Z$ be a set of $\card \kappa$. Give $Y$ the discrete topology and for $Z$, we set the closed sets be $Z$ plus all the subsets of $\card \kappa$. The identity $Y \to Z$ is continuous, but not a homeomorphism, but its restriction to any subset of $\card < \kappa$ is a homeomorphism, so $\mathcal{G}$ can't detect the fact that $f$ isn't an isomorphism. \item Let $\mathcal{G}$ be the \gls{cat} whose objects are the ordinals, with identities plus two morphisms $\alpha \twofuncs fg \beta$ whenever $\alpha < \beta$ with composition defined by $ff = fg = gf = gg = f$. Then $0$ is a \gls{det} for $\mathcal{C}$: it can tell that $0 \twofuncs fg \alpha$ aren't isomorphisms since neither factors through the other, and if $0 < \alpha < \beta$ it can tell that $\alpha \twofuncs fg \beta$ aren't isomorphisms since $0 \stackrel{g}{\to} \beta$ doesn't factor through either. But $\mathcal{C}$ has no separating set: if $\mathcal{G}$ is any set of ordinals, choose $\alpha > \beta$ for all $\beta \in \mathcal{G}$ and then $\mathcal{G}$ can't separate $\alpha \twofuncs fg \alpha + 1$. \end{enumerate} \end{example} By definition, the \glspl{func} $\mathcal{C}(A, \bullet) : \mathcal{C} \to \Set$ preserve \glspl{mono}, but they don't always preserve \glspl{epi}. \begin{fcdefn}[Projective] \label{defn:2.10} \glsadjdefn{proj}{projective}{object}% \glsadjdefn{pinj}{injective}{object}% % Definition 2.10 We say an object $P$ in a \gls{locsm} \gls{cat} $\mathcal{C}$is \emph{projective} if $\mathcal{C}(P, \bullet)$ preserves \glspl{epi}, i.e. if given \begin{picmath} \begin{tikzcd} & P \ar[d, "f"] \\ Q \ar[r, "g", two heads] & R \end{tikzcd} \end{picmath} there exists $h : P \to Q$ with $gh = f$. Dually, $P$ is \emph{injective} if it's projective in $\mathcal{C}^\op$. If $P$ satisfies this condition for all $g$ in some class $\mathcal{E}$ of \glspl{epi}, we call it \emph{$\mathcal{E}$-projective}. \end{fcdefn} \glsadjdefn{pws}{pointwise}{NA}% In $\funccat[\mathcal{C}, \Set]$, we consider the class of \emph{pointwise epimorphisms}, i.e. those $\alpha$ such that $\alpha_A$ is surjective for all $A$. \begin{fccoro}[] % Corollary 2.11 \Glspl{func} of the form $\mathcal{C}(A, \bullet)$ are \gls{pws} \gls{proj} in $\funccat[\mathcal{C}, \Set]$. \end{fccoro} \begin{proof} Immediate from \nameref{yoneda}; given \begin{picmath} \begin{tikzcd} & \mathcal{C}(A, \bullet) \ar[d, "\alpha"] \\ Q \ar[r, "\beta", two heads] & R \end{tikzcd} \end{picmath} with $\beta$ \gls{pws} \gls{epic}, $\Phi(\alpha) \in RA$ is $\beta_A(y)$ for some $y \in QA$, so $\beta\Psi(y) = \alpha$. \end{proof} ``$\funccat[\mathcal{C}, \Set]$ has enough \gls{pws} projectives'': \begin{fcprop}[] Assuming: - $\mathcal{C}$ is \gls{small} - $F : \mathcal{C} \to \Set$ Then: there exists a \gls{pws} \gls{epi} $P \epic F$ where $P$ is \gls{pws} \gls{proj}. \end{fcprop} \begin{proof} Set $P = \coprod_{(A, x)} \mathcal{C}(A, \bullet)$ where the disjoint union is over all pairs $(A, x)$ with $A \in \ob \mathcal{C}$ and $x \in FA$. A morphism $P \to Q$ is uniquely determined by a family of morphisms $\mathcal{C}(A, \bullet) \to Q$. . Hence $P$ is \gls{pws} \gls{proj}, since all the $\mathcal{C}(A, \bullet)$ are. But we have $\alpha : P \to F$ whose $(A, x)$-th component is $\Psi(x) : \mathcal{C}(A, \bullet) \to F$ and this is \gls{pws} \gls{epic} since any $x \in FA$ appears as $\Psi(x)(\identity{A})$. \end{proof}