%! TEX root = CT.tex % vim: tw=50 % 21/10/2024 09AM \begin{visiblefc}{6deace856624} \begin{proof}[Proof of \nameref{yoneda}(ii)] \divcloze{Suppose for the moment that $\mathcal{C}$ is \gls{small}, so that $\funccat[\mathcal{C}, \Set]$ is \gls{locsm}. Given two \glspl{func} $\mathcal{C} \times \funccat[\mathcal{C}, \Set] \to \Set$: the first sends an object $(A, F)$ to $FA$, and a morphism $(A \stackrel{f}{\to} A', F \stackrel{\alpha}{\to} F')$ to the diagonal of \begin{picmath} \begin{tikzcd}[ampersand replacement=\&] FA \ar[r, "Ff"] \ar[d, "\alpha_A"] \& FA' \ar[d, "\alpha_{A'}"] \\ F'A \ar[r, "F'f"] \& F'A' \end{tikzcd} \end{picmath} The second is the composite \[ \mathcal{C} \times \funccat[\mathcal{C}, \Set] \stackrel{Y \times 1}{\longrightarrow} \funccat[\mathcal{C}, \Set]^\op \times \funccat[\mathcal{C}, \Set] \stackrel{\funccat[\mathcal{C}, \Set](\bullet, \bullet)}{\longrightarrow} \Set \] where $Y$ is a \gls{yonem}. Then $\Phi$ and $\Psi$ define a \gls{nati} between these two. In elementary terms, this says that if $x \in FA$, and $x' \in F'A'$ is its image under the diagonal, then $\Psi(x')$ is the composite \[ \mathcal{C}(A', \bullet) \stackrel{\mathcal{C}(f, \bullet)}{\longrightarrow} \mathcal{C}(A, \bullet) \stackrel{\Psi(x)}{\longrightarrow} F \stackrel{\alpha}{\longrightarrow} F' .\] This makes sense without the assumption that $\mathcal{C}$ is \gls{small}, and it's true since the composite maps \[ \identity{A'} \mapsto f \mapsto (Ff)(x) \mapsto \alpha_{A'}(Ff)(x) . \qedhere \] } \end{proof} \end{visiblefc} \begin{example} \label{eg:2.6} % Example 2.6 \phantom{} \begin{enumerate}[(a)] \item The forgetful \gls{func} $\Gp \to \Set$ is \gls{reped} by $(\Zbb, 1)$, $\Rng \to \Set$ is \gls{reped} by $(\Zbb[X], X)$, $\Top \to \Set$ is \gls{reped} by $(\{*\}, *)$. \item The \gls{func} $\mathcal{P}^* : \Set^\op \to \Set$ is \gls{reped} by $(\{0, 1\}, \{1\})$. This is the bijection between subsets of $A$ and functions $A \stackrel{f}{\to} \{0, 1\}$, and it's natural. But $\mathcal{P} : \Set \to \Set$ is not \gls{reple}, since $P(\{*\})$ isn't a singleton. \item The \gls{func} $\Omega : \Top^\op \to \Set$ sending $X$ to the set of open subsets of $X$, and $X \stackrel{f}{\to} Y$ to $f^{-1} : \Omega(Y) \to \Omega(X)$ is \gls{reple} by the \emph{Sierpinski space} $\Sigma = \{0, 1\}$ with $\{1\}$ open but $\{0\}$ not open. This works since continuous maps $X \to \Omega$ are the characteristic functions of open subsets of $X$. \item The \gls{func} $(\bullet)^* : \Vect_k \to \Vect_k$ isn't \gls{reple}, but its composite with $\Vect_k \to \Set$ is \gls{reped} by $k$. \item For a group $G$ considered as a $1$-object \gls{cat}, the unique \gls{reple} \gls{func} $G \to \Set$ is the \emph{Cayley representation}: $G$ acting on itself by multiplication. \item \glsnoundefn{prod}{product}{products}% \glsnoundefn{coprod}{coproduct}{coproducts}% \glsnoundefn{catprod}{categorical coproduct}{categorical coproducts}% \glsnoundefn{catcoprod}{categorical coproduct}{categorical coproducts}% Given two objects $A, B$ in a \gls{locsm} \gls{cat} $\mathcal{C}$, we have a \gls{func} $\mathcal{C}^\op \to \Set$ sending $C$ to $\mathcal{C}(C, A) \times \mathcal{C}(C, B)$. If this \gls{func} is \gls{reple}, we call the representing object a \emph{categorical product} $A \times B$ and write $(\pi_1 : A \times B \to A, \pi_2 : A \times B \to B)$ for the universal element. Its defining property is that given any pair $(f : C \to A, g : C \to B)$, there is a unique isomorphism $h : C \to A \times B$ such that $\pi_q h = f$ and $\pi_2 h = g$. Dually, we have the notion of \emph{coproduct} $A + B$ with coprojections $\gamma_1 : A \to A + B$, $\gamma_2 : B \to A + B$. \item Given a parallel pair $A \twofuncs fg B$ in a \gls{locsm} \gls{cat} $\mathcal{C}$, we have a \gls{func} $F : \mathcal{C}^\op \to \Set$ sending $C$ to $\{h : C \to A \st fh = gh\}$ and defined on morphisms in the same way as $\mathcal{C}(\bullet, A)$. \glsnoundefn{equaler}{equaliser}{equalisers}% \glsnoundefn{coequaler}{coequaliser}{coequalisers}% \glsadjdefn{reg}{regular}{morphism}% \glsadjdefn{rege}{regular epi}{morphism}% A \gls{rep} of this \gls{func} is called an \emph{equaliser} of $(f, g)$: it consists of $E \stackrel{e}{\to} A$ satisfying $fe = ge$, and such that any $h$ with $fh = gh$ factors uniquely as $ek$. Note that $e$ is \gls{monic}; we call a \gls{mono} \emph{regular} if it occurs as an equaliser. Dually, we have the notions of \emph{coequaliser} and \emph{regular epi}. \end{enumerate} \end{example} In $\Set$, \glspl{prod} are just cartesian products (also in $\Gp$, $\Rng$, $\Top$, \ldots). \Glspl{coprod} in $\Set$ are disjoint unions $A \amalg B = (A \times \{0\}) \cup (B \times \{1\})$. In $\Gp$, \glspl{coprod} are free products $G * H$. In $\Set$, the \gls{equaler} of $A \twofuncs fg B$ is the inclusion of $\{a \in A \st f(a) = g(a)\}$ and the \gls{coequaler} of $(f, g)$ is the quotient of $B$ by the smallest equivalence relation containing $\{(f(a), g(a)) \st a + A\}$. Note that in $\Set$, all \glspl{mono} and all \glspl{epi} are \gls{reg}, but in $\Top$, a \gls{mono} $X \stackrel f\to Y$ is \gls{reg} if and only if $X$ is topologised as a subspace of $Y$. An \gls{epi} $X \stackrel f\to Y$ is \gls{reg} if and only if $Y$ is topologised as a quotient of $X$. Note that if $f$ is both \gls{reg} \gls{monic} and \gls{reg} \gls{epic}, then it's an isomorphism since the pair $(g, h)$ of which its \gls{equaler} must satisfy $g = h$. \begin{warning*} The following terminology is not standard. These are usually (both!) referred to as ``generating'', but to avoid confusion, in this course we will refer to them with separate names. \end{warning*} \begin{fcdefn}[Separating / generating family] \label{defn:2.7} % Definition 2.7 \glsadjdefn{seping}{separating}{family}% \glsadjdefn{deting}{detecting}{family}% \glsnoundefn{sep}{separator}{separators}% \glsnoundefn{det}{detector}{detectors}% Let $\mathcal{G}$ be a family of objects of a \gls{locsm} \gls{cat} $\mathcal{C}$. \begin{cenum}[(a)] \item We say $\mathcal{G}$ is a \emph{separating family} if the \glspl{func} $\mathcal{C}(G, \bullet)$, $G \in \mathcal{G}$ are jointly \gls{faith}, i.e. given a parallel pair $A \twofuncs fg B$, the equations $fh = gh$ for all $h : G \to A$ with $G \in \mathcal{G}$ imply $f = g$. \item We say $\mathcal{G}$ is a \emph{detecting family} if the $\mathcal{G}(G, \bullet)$ jointly reflect isomorphisms, i.e. given $A \stackrel f\to B$, if every $G \stackrel g\to B$ with $G \in \mathcal{G}$ factors uniquely through $f$, then $f$ is an isomorphism. \end{cenum} If $\mathcal{G} = \{G\}$, we call $G$ a \emph{separator} or a \emph{detector}. \end{fcdefn}