%! TEX root = CT.tex % vim: tw=50 % 18/10/2024 09AM \begin{fcdefn}[Skeleton] % Definition 1.13 \glsnoundefn{skon}{skeleton}{skeletons}% \glsadjdefn{skal}{skeletal}{\gls{cat}}% By a \emph{skeleton} of a \gls{cat} $\mathcal{C}$, we mean a \gls{full} subcategory containing just one object from each isomorphism class. We say $\mathcal{C}$ is \emph{skeletal} if it's a skeleton of itself. \end{fcdefn} \begin{example*} $\Mat_k$ is a \gls{skal} \gls{cat}; it's isomorphic to the \gls{skon} of $\mathbf{fdVect}_k$ consisting of the spaces $k^n$. \end{example*} However, working with \gls{skal} \glspl{cat} involves heavy use of the axiom of choice. \begin{fcdefn}[Monomorphism / epimorphism] % Definition 1.14 \glsadjdefn{epic}{epic}{arrow}% \glsadjdefn{monic}{monic}{arrow}% \glsnoundefn{mono}{monomorphism}{monomorphisms}% \glsnoundefn{epi}{epimorphism}{epimorphisms}% \glsadjdefn{bal}{balanced}{\gls{cat}}% \glssymboldefn{monoepi}% Let $f : A \to B$ be a morphism in a \gls{cat} $\mathcal{C}$. We say $f$ is a \emph{monomorphism} (or \emph{monic}) if, given $C \twofuncs gh A$, $fg = fh \implies g = h$. We say $f$ is an \emph{epimorphism} (or \emph{epic}) if it's a monomorphism in $\mathcal{C}^\op$. We write $A \stackrel{f}{\rightarrowtail} B$ to indicate that $f$ is monic, and $A \stackrel{f}{\twoheadrightarrow} B$ to indicate that it's epic. We say $\mathcal{C}$ is \emph{balanced} if every arrow which is monic and epic is an isomorphism. \end{fcdefn} \glsadjdefn{splitme}{split}{mono / epi}% We will call a \gls{monic} morphism $e$ \emph{split} if it has a left inverse (and similarly we may define the notion of split \gls{epic}). \begin{example} % Example 1.15 \phantom{} \begin{enumerate}[(a)] \item In $\Set$, \gls{monic} $\iff$ injective ($\Leftarrow$ obvious; for $\Rightarrow$ consider morphisms $\{*\} \to A$). Also, \gls{epic} $\iff$ surjective ($\Leftarrow$ obvious; for $\Rightarrow$ consider morphisms $B \to \{0, 1\}$). \item In $\Gp$, \gls{monic} $\iff$ injective (for $\Rightarrow$ consider homomorphisms $\Zbb \to G$), and \gls{epic} $\iff$ surjective (but $\Rightarrow$ is quite non-trivial -- it uses free products with amalgamation). \item In $\Rng$, \gls{monic} $\iff$ injective, but \gls{epic} does not imply surjective (for example, consider $\Zbb \injto \Qbb$). \item In $\Top$, \gls{monic} $\iff$ injective and \gls{epic} $\iff$ surjective (as in $\Set$) but $\Top$ isn't balanced. \item In preorder, all morphisms are \gls{monic} and \gls{epic}, so a preorder is \gls{bal} if and only if it's an equivalence relation. \end{enumerate} \end{example} \newpage \section{The Yoneda Lemma} \begin{fcdefn}[Locally small] % Definiton 2.1 \glsadjdefn{locsm}{locally small}{\gls{cat}}% \glssymboldefn{morphs}% We say a \gls{cat} $\mathcal{C}$ is \emph{locally small} if, for any two objects $A$ and $B$, the morphisms $A \to B$ in $\mathcal{C}$ are parameterised by a set $\mathcal{C}(A, B)$. \end{fcdefn} \glssymboldefn{morphf}% If $A$ is an object of a \gls{locsm} \gls{cat} $\mathcal{C}$, we have a \gls{func} $\mathcal{C}(A, \bullet) : \mathcal{C} \to \Set$ sending $B$ to $\morphs\mathcal{C}(A, B)$ and a morphism $B \stackrel{g}{\to} C$ to the mapping $(f \mapsto gf) : \morphs\mathcal{C}(A, B) \to \morphs\mathcal{C}(A, C)$ (this is \glsref[func]{functorial} since composition in $\mathcal{C}$ is associative). Dually, we have $\mathcal{C}(\bullet, B) : \mathcal{C}^\op \to \Set$. \begin{fclemma}[Yoneda] \label{yoneda} % Lemma 2.2 Assuming: - $\mathcal{C}$ is a \gls{locsm} \gls{cat} - $A \in \ob \mathcal{C}$ - $F : \mathcal{C} \to \Set$ a \gls{func} Thens:[(i)] - There is a bijection between \glspl{natt} $\morphf\mathcal{C}(A, \bullet) \to F$ and elements of $FA$. - Moreover, this bijection is \gls{natal} in $A$ and $F$. \end{fclemma} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Given $\alpha : \morphf \mathcal{C}(A, \bullet) \to F$, we define $\Phi(\alpha) = \alpha_A(\identity A) \in FA$. Given $x \in FA$, we define $\Psi(x) : \morphf \mathcal{C}(A, \bullet) \to F$ by $\Psi(x)_B(f : A \to B) = Ff(x) \in FB$. This is natural in $B$ since $F$ is a \gls{func}: given $g : B \to C$ we have \[ (Fg)\Psi(x)_B(f) = (Fg)(Ff)(x) = F(gf)(x) = \Psi(x)_C(gf) .\] For any $x$, $\Phi \Psi(x) = \Psi(x)_A(\identity A) = F\identity A(x) = x$. For any $\alpha$, $\Psi \Phi(\alpha)_B (f) = Ff(\alpha_A(\identity A)) = \alpha_B(\morphf \mathcal{C}(A, f)(\identity A) = \alpha_B(f)$ for all $f : A \to B$. So $\Psi \Phi(\alpha) = \alpha$. \item Later. Seeing examples of usage of (i) is interesting first. \qedhere \end{enumerate} \end{proof} \begin{fccoro}[] % Corollary 2.3 Assuming: - $\mathcal{C}$ a \gls{locsm} \gls{cat} Then: $A \mapsto \morphf \mathcal{C}(A, \bullet)$ is a \gls{full} and \gls{faith} \gls{func} $\mathcal{C}^\op \to \funccat[\mathcal{C}, \Set]$. \end{fccoro} \begin{proof} Substitute $\morphf \mathcal{C}(B, \bullet)$ for $F$ in \cref{yoneda}(i): we have a bijection from $\morphs \mathcal{C}(B, A)$ to the collection of \glspl{natt} $\morphf \mathcal{C}(A, \bullet) \to \morphf \mathcal{C}(B, \bullet)$. For a given $f$, the \gls{natt} $ \mathcal{C}(f, \bullet)$ sends $g : B \to C$ to $gf$, so this is \gls{funcal} by associativity of composition $\mathcal{C}$. \glsnoundefn{yonem}{Yoneda embedding}{Yoneda embeddings}% Similarly, we have a \gls{full} and \gls{faith} \gls{func} $\mathcal{C} \to \funccat[\mathcal{C}^\op, \Set]$ sending $A$ to $\morphf \mathcal{C}(\bullet, A)$. We call this the \emph{Yoneda embedding}: it allows us to regard any \gls{locsm} \gls{cat} $\mathcal{C}$ as a \gls{full} subcategory of a $\Set$-valued \gls{func} \gls{cat}. \end{proof} Compare with Cayley's Theorem in group theory (every group is isomorphic to a subgroup of a permutation group) and `Dedekind's Theorem' (every poset is isomorphic to a sub-poset of a power set). \begin{fcdefn}[Representable] % Definition 2.4 \glsnoundefn{rep}{representation}{representations}% \glsnoundefn{reped}{represented}{}% \glsadjdefn{reple}{representable}{\gls{func}}% We say a \gls{func} $F : \mathcal{C} \to \Set$ is \emph{representable} if it's isomorphic to a $\morphf \mathcal{C}(A, \bullet)$ for some $A$. By a \emph{representation} of $F$, we mean a pair $(A, x)$ where $x \in FA$ is such that $\Phi(x)$ is an isomorphism. We call $x$ a \emph{universal element} of $F$. \end{fcdefn} \begin{corollary} % Corollary 2.5 Suppose $(A, x)$ and $(B, y)$ are both \glspl{rep} of $F$. Then there is a unique isomorphism $A \stackrel{f}{\to} B$ such that $(Ff)(x) = y$. \end{corollary} \begin{proof} $(Ff)(x) = g$ is equivalent to saying that \begin{picmath} \begin{tikzcd} \morphf\mathcal{C}(B, \bullet) \ar[rr, "\mathcal{C}(f{,} \bullet)"] \ar[rd, "\Phi(y)", swap] & & \morphf \mathcal{C}(A, \bullet) \ar[ld, "\Phi(x)"] \\ & F \end{tikzcd} \end{picmath} commutes, so $f$ must be the unique isomorphism, whose image under \nameref{yoneda} is $\Phi(x)^{-1} \Phi(y)$. \end{proof}