%! TEX root = CT.tex % vim: tw=50 % 16/10/2024 09AM \item The \emph{Hurewicz homomorphism} links the homotopy and homology groups of a space $X$. Elements of $\pi_n(X, x)$ are homotopy classes of basepoint-preserving maps $S^n \stackrel{f}{\to} X$. If we think of $S^n$ as $\partial \Delta^{n + 1}$, $f$ defines a singular $n$-cycle on $X$ and homotopic maps differ by an $n$-boundary, so we get a well-defined map $\pi_n(X, x) \stackrel{h_n}{\to} H_n(X)$. $h_n$ is a homomorphism, and it's a \gls{natt} $\pi_n \to H_n U$, where $U$ is the forgetful functor $\Top_* \to \Top$. \end{enumerate} \end{example} We have isomorphisms of \glspl{cat}: e.g. $F : \Rel \to \Rel^\op$ defined by $FA = A$, $FR = R^o = \{(b, a) \st (a, b) \in R\}$ is its own inverse. But we have a weaker notion of equivalence of \glspl{cat}. \glsadjdefn{natyi}{naturally isomorphic}{\glspl{cat}}% \begin{fclemma}[] \label{lemma:1.8} \glsnoundefn{nati}{natural isomorphism}{natural isomorphisms}% % Lemma 1.8 Assuming: - $\alpha : F \to G$ is a \gls{natt} between \glspl{func} $\mathcal{C} \twofuncs{}{} \mathcal{D}$ Then: $\alpha$ is an isomorphism in $\funccat[\mathcal{C}, \mathcal{D}]$ if and only if $\alpha_A$ is an isomorphism in $\mathcal{D}$ for each $A$. \end{fclemma} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] Obvious since composition in $\funccat[\mathcal{C}, \mathcal{D}]$. \item[$\Leftarrow$] Suppose each $\alpha_A$ has an inverse $\beta_A$. Given $A \stackrel{f}{\to} B$ in $\mathcal{C}$, in the diagram \begin{picmath} \begin{tikzcd} GA \ar[r, "Gf"] \ar[d, "\beta_A"] & GB \ar[d, swap, "\beta_B"] \\ FA \ar[r, "Ff"] \ar[u, bend left=45, "\alpha_A"] & FB \ar[u, bend right=45, swap, "\alpha_B"] \end{tikzcd} \end{picmath} we have $\beta_B(Gf) = \beta_B(Gf) \alpha_A \beta_A = \beta_B \alpha_B(Ff)\beta_A = (Ff)\beta_A$. \qedhere \end{enumerate} \end{proof} \begin{fcdefn}[Equivalence of categories] \label{defn:1.9} % Definition 1.9 \glsnoundefn{catp}{categorical property}{categorical properties}% \glsnoundefn{equivc}{equivalence}{equivalences}% \glsadjdefn{equivt}{equivalent}{\glspl{cat}}% \glssymboldefn{equiv}% Let $\mathcal{C}$ and $\mathcal{D}$ be \glspl{cat}. An \emph{equivalence} between $\mathcal{C}$ and $\mathcal{D}$ consists of \glspl{func} $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ together with \glspl{nati} $\alpha : \identity{ \mathcal{C}} \to GF$, $\beta : FG \to \identity{ \mathcal{D}}$. We write $\mathcal{C} \equiv \mathcal{D}$ if there exists an \gls{equivc} between $\mathcal{C}$ and $\mathcal{D}$. We say $P$ is a \emph{categorical property} if \[ (\text{$\mathcal{C}$ has $P$ and $\mathcal{C} \equiv \mathcal{D}$}) \implies \text{$\mathcal{D}$ has $P$} .\] \end{fcdefn} \begin{example} % Example 1.10 \phantom{} \begin{enumerate}[(a)] \item The \gls{cat} $\Part$ of sets and partial functions is \gls{equivt} to $\Set_*$ (the \gls{cat} of pointed sets). We define $F : \Set_* \to \Part$ by $F(A, a) = A \setminus \{a\}$ and if $f : (A, a) \to (B, b)$, with $(Ff)(x) = f(x)$ if $f(x) \neq b$ and undefined otherwise. Then define $G : \Part \to \Set_*$ by $G(A) = (A \cup \{A\}, A)$ and if $f : A \partf B$, then \[ Gf(x) = \begin{cases} f(x) & \text{if $x \in A$ and $f(x)$ is defined} \\ B & \text{otherwise} \end{cases} .\] Then $FG = \identity{\Part}$; $GF \neq \identity{\Set_*}$, but there is an isomorphism $\identity{\Set_*} \to GF$. Note that $\Part \not\cong \Set_*$. \item We have an \gls{equivc} $\mathbf{fdVect}_k \equivc \mathbf{fdVect}_k^\op$: both \glspl{func} are $(\bullet)^*$, and both isomorphisms are $\alpha : \identity{\mathbf{fdVect}_k} \to (\bullet)^{**}$. \item We have an \gls{equivc} $\mathbf{fdVect}_k \equivc \Mat_k$: we define $F : \Mat_k \to \mathbf{fdVect}_k$ by $F(n) = k^n$, $F(n \stackrel{A}{\to} p)$ is the linear map $k^n \to k^p$ represented by $A$ (with respect to standard bases). TO define $G$, choose a basis for each $V$, and define $G(V) = \dim V$, \[ G(V \stackrel{f}{\to} W) = \text{matrix representing $f$ with respect to chosen bases} .\] $GF = \identity{\Mat_k}$; the choice of bases yields isomorphisms $k^{\dim V} \to V$ for each $V$, which form a \gls{natt} $FG \to \identity{\mathbf{fdVect}_k}$. \end{enumerate} \end{example} \begin{fcdefn}[Faithful / full / essentially surjective] % Definition 1.11 \glsadjdefn{faith}{faithful}{\gls{func}}% \glsadjdefn{full}{full}{\gls{func}}% \glsadjdefn{esss}{essentially surjective}{\gls{func}}% \glsadjdefn{essi}{essentially injective}{\gls{func}}% Let $F : \mathcal{C} \to \mathcal{D}$ be a \gls{func}. \begin{cenum}[(a)] \item We say $F$ is \emph{faithful} if, given $f$ and $g$ in $\mor \mathcal{C}$, $(Ff = Fg$, $\dom f = \dom g$, $\cod f = \cod g) \implies f = g$. \item We say $F$ is \emph{full} if, for every $g : FA \to FB$ in $\mathcal{D}$, there exists $f : A \to B$ in $\mathcal{C}$ with $Ff = g$. \item We say $F$ is \emph{essentially surjective} if, for any $B \in \ob \mathcal{D}$, there exists $A \in \ob \mathcal{C}$ with $FA \cong B$. \end{cenum} Note that if $F$ is full and faithful, it's essentially injective: given $FA \customstackrel[\cong]{g}{\to} FB$ in $\mathcal{D}$, the unique $A \stackrel{f}{\to} B$ with $Ff = g$ is an isomorphism. We say $\mathcal{D} \subseteq \mathcal{C}$ is a \emph{full subcategory} if the inclusion $\mathcal{D} \to \mathcal{C}$ is a full \gls{func}. \end{fcdefn} \begin{fclemma}[] % Lemma 1.12 Assuming: - $F : \mathcal{C} \to \mathcal{D}$ Then: $F$ is part of an \gls{equivc} $\mathcal{C} \equivc \mathcal{D}$ if and only if $F$ is \gls{full}, \gls{faith}, \gls{esss}. \end{fclemma} \begin{iffproof} \rightimpl Suppose give $G$, $\alpha$ and $\beta$ as in \cref{defn:1.9}. Then $\beta_B : FGB \to B$ witnesses the fact that $F$ is \gls{esss}. If $A \twofuncs{f}{g} B$ satisfy $Fg = Fg$, then $GFf = GFg$; but $f = \alpha_B^{-1}(GFf) \alpha_A$, so $f = g$. Suppose given $FA \stackrel{g}{\to} FB$; then $f = \alpha_B^{-1} (Gg) \alpha_A$ satisfies $GFf = Gf$ but $G$ is \gls{faith} for the same reason as $F$, so $Ff = g$. \leftimpl For each $B \in \ob \mathcal{D}$, chose $GB \in \ob \mathcal{C}$ and an isomorphism $\beta_B : FGB \to B$. Given $B \stackrel{g}{\to} C$, define $Gg : GB \to GC$ to be the unique morphism such that $FGg = \beta_C^{-1} g \beta_B$. Functoriality follows from uniqueness, and \gls{naty} of $\beta$. We define $\alpha_A : A \to GFA$ to be the unique morphism such that $F\alpha_A = \beta_{FA}^{-1} : FA \to FGFA$. $\alpha_A$ is an isomorphism, and \glspl{natsq} for $\alpha$ are mapped by $F$ to \glspl{natsq} for $\beta^{-1}$, so they commute. \qedhere \end{iffproof}