%! TEX root = CT.tex % vim: tw=50 % 29/11/2024 09AM \glsnoundefn{allg}{allegory}{allegories}% P. Freyd developed a theory of \emph{allegories} which have the structure of \glspl{cat} of \glspl{rel} and axiomatised those allegories $\mathcal{A}$ for which the sub\gls{cat} $\mathcal{A}_{la}$ is \gls{reg}. \glsnoundefn{erel}{equivalence relation}{equivalence relations}% \glsadjdefn{reflr}{reflexive}{relation}% \glsadjdefn{symmr}{symmetric}{relation}% \glsadjdefn{transr}{transitive}{relation}% \glsadjdefn{eff}{effective}{\gls{erel}}% \glsadjdefn{effregc}{effective regular}{\gls{cat}}% In a \gls{reg} \gls{cat} $\mathcal{C}$, we say a \gls{rel} $R : A \torel A$ is \emph{reflexive} if $\indicator{A} \le R$, \emph{symmetric} if $R^\ucirc = R$, and \emph{transitive} if $R \circ R \le R$. $R$ is an \emph{equivalence relation} if it has all three properties. For any $A \stackrel{f}{\to} B$ in $\mathcal{C}$, the kernel-pair $R \stackrel{(a, b)}{\to} A \times A$ of $f$ is an \gls{erel}. We say an \gls{erel} $R$ is \emph{effective} if it occurs as a kernel-pair, and $\mathcal{C}$ is \emph{effective regular} if all \glspl{erel} are effective. $\tfAbGp$ is \gls{regc} but not \gls{effregc}: $\{(m, n) \in \Zbb \times \Zbb \st m \equiv n \pmod 2\}$ is a non-\gls{eff} \gls{erel} on $\Zbb$. Note that an \gls{erel} is idempotent in $\Reln(\mathcal{C})$, and if $\mathcal{A}$ is an \gls{allg} and $\mathcal{E}$ is a class of \gls{symmr} idempotents in $\mathcal{A}$ then $\mathcal{A}[\check{\mathcal{E}}]$ (as defined in Exercise 1.18) is an \gls{allg}; and if $\mathcal{A}$ is $\Reln(\mathcal{C})$ for a \gls{reg} \gls{cat} $\mathcal{C}$, then: \begin{fcprop}[] \label{prop:7.8} % Proposition 7.8 Assuming: - $\mathcal{C}$ a \gls{reg} \gls{cat} - $\mathcal{E}$ is the class of \glspl{erel} in $\mathcal{C}$ Then: $\mathcal{C}_{\text{eff}} = (\Reln(\mathcal{C})[\check{\mathcal{E}}])_{la}$ is \gls{effregc}, and the embedding $\Reln(\mathcal{C}) \to \Reln(\mathcal{C})[\check{\mathcal{E}}]$ restricts to a \gls{full} and \gls{faith} \gls{reg} \gls{func} $\mathcal{C} \to \mathcal{C}_{\text{eff}}$ which is universal among \gls{reg} \glspl{func} $\mathcal{C} \to \mathcal{D}$ where $\mathcal{D}$ is \gls{effregc}. \end{fcprop} Note that if $\mathcal{C}$ is \gls{effregc}, its \glspl{erel} are split idempotents in $\Reln(\mathcal{C})$: if $A \stackrel{R}{\torel} A$ is the kernel-pair of $A \stackrel{f}{\covers} B$ then it splits as $f^\bull f_\bull$ (as we saw for $\mathcal{C} = \Set$ in Exercise 1.19). \begin{fcdefn}[Topos] \glsnoundefn{topos}{topos}{toposes}% \label{defn:7.9} % Definition 7.9 A \emph{topos} is a \gls{regc} \gls{cat} $\mathcal{E}$ for which the embedding $\mathcal{E} \to \Reln(\mathcal{E})$ sending $f$ to $f_\bull$ has a \gls{radj}. We write the effect of the \gls{radj} on objects by $A \mapsto PA$, and the \gls{unit} $A \to PA$ as $\{\}_A$, and the \gls{counit} $PA \torel A$ as $\exists_A \monic PA \times A$. \end{fcdefn} In $\Set$, $PA$ is the power-set of $A$, the unit is the mapping $a \mapsto \{a\}$ of \cref{eg:1.7}(c), and $\exists_A = \{(A', a) \mid a \in A'\} \subseteq PA \times A$. Note that (isomorphism classes of) \glspl{subobj} of $A$ are in bijection with morphisms $\identity{} \to PA$. C. J. Mikkelses showed that any \gls{topos} has finite \glspl{colim}; we'll give Bob Par\'e's proof, which is much simpler. \begin{fcprop}[] \label{prop:7.10} % Proposition 7.10 Assuming: - $\mathcal{E}$ a \gls{topos} Then: there exists a \gls{monadic} \gls{func} $\mathcal{E}^\op \to \mathcal{E}$. In particular, $\mathcal{E}^\op$ has finite \glspl{colim} and if $\mathcal{E}$ has \glspl{lim} of shape $J$ then it also has \glspl{colim} of shape $J^\op$. \end{fcprop} \begin{proof} We make the assignment $A \mapsto PA$ into a \gls{func} $P : \mathcal{E} \to \mathcal{E}$ and a \gls{func} $P^* : \mathcal{E}^\op \to \mathcal{E}$: given $f : A \to B$, $Pf : PA \to PB$ corresponds to the \gls{image} of $\exists_A \monic PA \times A \stackrel{\identity{} \times f}{\to} PA \times B$, and $P^* f$ corresponds to the \gls{pullb} of \begin{picmath} \begin{tikzcd} & \exists_B \ar[d, tail] \\ PB \times A \ar[r, "\identity{} \times f"] & PB \times B \end{tikzcd} \end{picmath} Given $C \stackrel{g}{\to} PA$ corresponding to $R \monic C \times A$, $(Pf)g$ corresponds to the \gls{image} of $R \monic C \times A \stackrel{\identity{} \times f}{\to} C \times B$ and similarly given $S \monic D \times B$, composing with $P^* f$ corresponds to pulling back along $D \times A \stackrel{\identity{} \times f}{\to} D \times B$. Given a \gls{pullb} square \begin{picmath} \begin{tikzcd} D \ar[r, "h"] \ar[d, "k"] & A \ar[d, "f"] \\ B \ar[r, "g"] & C \end{tikzcd} \end{picmath} in $\mathcal{E}$, \begin{picmath} \begin{tikzcd} PD \ar[d, "Pk"] & PA \ar[l, "P^* h"] \ar[d, "Pf"] \\ PB & PC \ar[l, "P^* g"] \end{tikzcd} \end{picmath} commutes, since both ways correspond to the \gls{image} of the left vertical composite in \begin{picmath} \begin{tikzcd} E \ar[r] \ar[d, tail] & \exists_A \ar[d, tail] \\ PA \times D \ar[r] \ar[d] & PA \times A \ar[d] \\ PA \times B \ar[r] & PA \times C \end{tikzcd} \end{picmath} where both squares are \glspl{pullb}. Now, as in \cref{eg:5.14}(d), we have that if $E \stackrel{e}{\to} A \twofuncs fg B$ is a co\gls{pprefl} in $\mathcal{E}$, then \begin{picmath} \begin{tikzcd} PB \ar[r, shift left=3pt, "P^* f"] \ar[r, shift right=3pt, "P^* g", swap] & PA \ar[r, "P^* e"] \ar[l, bend left=45, "Pg"] & PE \ar[l, bend left=30, "Pe"] \end{tikzcd} \end{picmath} is a \gls{splitcoeq} \gls{coequaler} in $\mathcal{E}$. Also, $P^*$ is self-adjoint on the right, and it \gls{reflects} isomorphisms by Exercise 7.17(v). The second assertion follows from \cref{prop:5.8}(i). \end{proof}