%! TEX root = CT.tex % vim: tw=50 % 27/11/2024 09AM \item If $\mathcal{C}$ is a preorder, every morphism is its own \gls{image}, and \glspl{cover} are isomorphisms. So $\mathcal{C}$ is \gls{regc} if and only if it has finite meets. \item $\Top$ has \glspl{image} and co\glspl{image}: given $X \stackrel{f}{\to} Y$, its \gls{image} (respectively co\gls{image}) is its set-theoretic image topologised as a quotient of $X$ (respectively subspace of $Y$). $\Top$ isn't \gls{regc}, but it is co\gls{regc}. \end{enumerate} \end{example} \begin{fcprop}[] \label{prop:7.5} % Proposition 7.5 Assuming: - $\mathcal{C}$ a \gls{regc} Then: \glspl{cover} coincide with \gls{regc} \glspl{epi}. \end{fcprop} \begin{iffproof} \leftimpl \glsref[reg]{Regular} \gls{epi} implies strong \gls{epi} by Exercise 2\.14. \rightimpl Suppose $A \stackrel{f}{\covers} B$ is a \gls{cover}; let $R \twofuncs ab A$ be its kernel-pair, i.e. the \gls{pullb} of \begin{picmath} \begin{tikzcd} & A \ar[d, "f"] \\ A \ar[r, "f"] & B \end{tikzcd} \end{picmath} Suppose given $g : A \to C$ with $ga = gb$; form the \gls{image} $A \stackrel{e}{\covers} \stackrel{(h, k)}{\monic} B \times C$ of $A \stackrel{(f, g)}{\to} B \times C$. We'll show $h$ is an isomorphism, so that $kh^{-1}$ is a factorisation of $g$ through $f$. $h$ is a \gls{cover} since $he = f$ is, so we need to prove $h$ is \gls{monic}. Let $D \twofuncs lm I$ such that $hl = hm$; form the \gls{pullb} \begin{picmath} \begin{tikzcd} P \ar[r, "p"] \ar[d, "(q{,} r)"] & D \ar[d, "(e{,} m)"] \\ A \times A \ar[r, "e \times e"] & I \times I \end{tikzcd} \end{picmath} $e \times e$ factors as $A \times A \stackrel{1 \times e}{\covers} A \times I \stackrel{e \times 1}{\covers} I \times I$, so $e \times e$ is a \gls{cover}, and $p$ is a \gls{cover}. Now $fq = heq = hlp = hmp = her = fr$ so $(q, r)$ factors through $(a, b)$. But $(h, k) ea = (f, g)a = (f, g)b = (h, k) eb$ and $(h, k)$ is \gls{monic}, so $ea = eb$, so $eq = er$, i.e. $lp = mp$. Also $p$ is \gls{epic}, so $l = m$. \end{iffproof} \glssymboldefn{relation}% \glsnoundefn{rel}{relation}{relations}% By a \emph{relation} $A \looparrowright B$ in a \gls{cat} $\mathcal{C}$ with finite \glspl{prod}, we mean an isomorphism class of \glspl{subobj} $R \monic A \times B$. If $\mathcal{C}$ has \glspl{image}, we define the composite of $A \stackrel{R}{\looparrowright} B \stackrel{S}{\looparrowright} C$ by forming the \gls{pullb} \begin{picmath} \begin{tikzcd} P \ar[r, "q"] \ar[d, "p"] & S \ar[r, "d"] \ar[d, "c"] & C \\ R \ar[r, "b"] \ar[d, "a"] & B \\ A \end{tikzcd} \end{picmath} forming the \gls{image} of $(ap, dq) : P \to A \times C$. This is well-defined up to isomorphism and has the $A \stackrel{(\identity{A}, \identity{A})}{\monic} A \times A$ as $2$-sided identities. \begin{fclemma}[] \label{lemma:7.6} % Lemma 7.6 \begin{iffc} \lhs Composition of \glspl{rel} in $\mathcal{C}$ is associative \rhs $\mathcal{C}$ is \gls{regc}. \end{iffc} \end{fclemma} \begin{iffproof} \rightimpl Suppose given $A \stackrel{f}{\to} B \stackrel{e}{\glsref[relation_symbol]{\leftarrowtriangle}} C$. Consider the \glspl{rel} \begin{picmath} \begin{tikzcd} & A \ar[ld, "\identity{A}"] \ar[rd, "f"] & & C \ar[ld, "e"] \ar[rd, "\identity{A}"] & & C \ar[ld, "\identity{A}"] \ar[rd, "!_C"] \\ A & & B & & C & & 1 \end{tikzcd} \end{picmath} Composing the right hand pair first, we get \begin{picmath} \begin{tikzcd} & B \ar[ld, "\identity{B}"] \ar[rd, "!_B"] \\ B & & 1 \end{tikzcd} \end{picmath} and thus we get \begin{picmath} \begin{tikzcd} & A \ar[ld, "\identity{A}"] \ar[rd, "!_A"] \\ A & & 1 \end{tikzcd} \end{picmath} Composing the left hand pair first, we begin by forming the \gls{pullb} \begin{picmath} \begin{tikzcd} & P \ar[ld, "p"] \ar[rd, "q"] \\ A \ar[rd, "f"] & & C \ar[ld, "e", {-Triangle[open]}] \\ & B \end{tikzcd} \end{picmath} and we endup with the \gls{image} of $(p, !_P) : P \to A \times 1$; so $p$ must be a \gls{cover}. \leftimpl Suppose given \glspl{rel} $A \stackrel{R}{\torel} B \stackrel{S}{\torel} C \stackrel{T}{\torel} D$. If we form the \glspl{pullb} \begin{picmath} \begin{tikzcd} U \ar[r] \ar[d] & Q \ar[r] \ar[d] & T \ar[r] \ar[d] & D \\ P \ar[r] \ar[d] & S \ar[r] \ar[d] & C \\ R \ar[r] \ar[d] & B \\ A \end{tikzcd} \end{picmath} then both $T \circ (S \circ R)$ and $(T \circ S) \circ R$ are the \gls{image} of $U \to A \times D$. \end{iffproof} \glssymboldefn{Relc}% We write $\Reln(\mathcal{C})$ for the \gls{cat} whose objects are those of $\mathcal{C}$ and whose morphisms are \glspl{rel}. Note that $\Reln(\Set)$ is just $\Rel$ as defined in \cref{eg:1.3}(e). \glssymboldefn{bull}% \glssymboldefn{circ}% We have a \gls{faith} \gls{func} $\mathcal{C} \to \Reln(\mathcal{C})$ which is the identity on objects and sends $A \stackrel{f}{\to} B$ to $A \stackrel{(1, f)}{\monic} A \times B$ (for \gls{faith}ness, see Exercise 4.22(i)). We write $f_\bullet$ for $(\identity{A}, f)$. Note that there's an isomporphism $\Reln(\mathcal{C}) \to \Reln(\mathcal{C}^\op)$ which is the identity on objects and sends $R \stackrel{(a, b)}{\monic} A \times B$ to $R \stackrel{(b, a)}{\monic} B \times A$; we denote this by $R^\circ$, and write $f^\bullet$ for $(f_\bull)^\circ$. Also, $\Reln(\mathcal{C})$ is enriched over $\mathbf{Poset}$ (provided $\Reln(\mathcal{C})$ is \gls{locsm}, i.e. $\mathcal{C}$ is \gls{wp}), i.e. each $\Reln(\mathcal{C})(A, B)$ has a partial order which is preserved by composition. We say $A \stackrel{R}{\torel} B$ is \emph{left adjoint} to $B \stackrel{S}{\torel} A$ if $\identity{A} \le S \circ R$ and $R \circ S \le \identity{B}$. \begin{fcprop}[] \begin{iffc} \lhs $A \stackrel{R}{\torel} B$ is a left adjoint in $\Reln(\mathcal{C})$ \rhs it is of the form $f_\bull$. \end{iffc} \end{fcprop} \begin{iffproof} \leftimpl We show $(f_\bull \adjoint f^\bull)$: the composite $f^\bull f_\bull$ is just the kernel-pair $R \stackrel{(a, b)}{\monic} A \times A$ of $f$, and $A \stackrel{(\identity{A}, \identity{A})}{\monic} A \times A$ factors through it. Also $f_\bull f^\bull$ is the \gls{image} of \begin{picmath} \begin{tikzcd} A \ar[rr, "(f{,} f)"] \ar[rd, "f"] & & B \times B \\ & B \ar[ud, "(\identity{B}{,} \identity{B})"] \end{tikzcd} \end{picmath} so it contains $(\identity{B}, \identity{B})$. \rightimpl Conversely, suppose $R \stackrel{(a, b)}{\monic} A \times B$ has a \gls{radj} $R' \stackrel{(b', a')}{\monic} B \times A$. In forming $R' \circ R$, we take the \gls{pullb} \begin{picmath} \begin{tikzcd} P \ar[r, "p'"] \ar[d, "p"] & R' \ar[d, "b'"] \\ R \ar[r, "b"] & B \end{tikzcd} \end{picmath} So the \gls{image} of $(ap, a'p')$ contains $A \stackrel{(\identity{A}, \identity{A})}{\to} A \times A$, so $ap$ factors as a \gls{cover} followed by a \gls{splitme} \gls{epi}, so $a$ is a \gls{cover}. Now, in the \gls{pullb} \begin{picmath} \begin{tikzcd} Q \ar[r, "q"] \ar[d, "q"] & R' \ar[d, "a'"] \\ R \ar[r, "a"] & A \end{tikzcd} \end{picmath} $q$ and $q'$ are \glspl{cover}, but the \gls{image} of $(bq, b'q)$ is contained in $(\identity{B}, \identity{B})$ so $bq = b'q'$. But $aq = a'q'$, so $R' = R^\ucirc$, $a = a'$, $b = b'$ and $q = q'$. So $a$ is \gls{monic}, and hence an isomorphism, so $R = (ba^{-1})$. \end{iffproof}