%! TEX root = CT.tex % vim: tw=50 % 25/11/2024 09AM Note that the characterisation of $\mathcal{T}$-\glspl{model} in any \gls{cat} with finite products. Note also that the equations of \cref{lemma:6.10} allow us to reduce any compound operation $\alpha(\beta_1(x\cdots), \beta_2(x\cdots), \ldots, \beta_n(x\cdots))$ to a single operation $\gamma$. \begin{fcthm}[] \label{thm:6.11} % Theorem 6.11 Assuming: - $\mathcal{C}$ a \gls{cat} Then: the following are equivalent: \begin{cenum}[(i)] \item $\mathcal{C}$ is \gls{equivt} to a finitary algebraic \gls{cat} in the sense of \cref{eg:5.14}(a). (Recall that these \glspl{cat} are those whose objects are sets with finitary operations satisfying some equations, and morphisms are homomorphisms between them.) \item $\mathcal{C}$ is \gls{equivt} to the \gls{cat} of $\Set$-\glspl{model} of a \gls{Lt}. \item $\mathcal{C} \simeq \Set\emat$ for a finitary \gls{monad} $\Tbb$ on $\Set$. \end{cenum} \end{fcthm} \begin{proof} \phantom{} \begin{enumerate}[(i) $\Rightarrow$ (ii)] \item[(ii) $\Rightarrow$ (i)] Let $\mathcal{T}$ be the \gls{full} sub\gls{cat} of $\mathcal{C}$ on the free algebras $F[n]$, for $n \in \Nbb$. Then $\mathcal{T}$ is a \gls{Lt}, and for every object $A$ of $\mathcal{C}$, the \gls{func} $\mathcal{C}(\blank, A)$ restricted to $\mathcal{T}$ \gls{preses} finite \glspl{prod}, so it's a \gls{model} of $\mathcal{T}$. This defines a \gls{func} $\mathcal{T}-\Mod(\Set) \stackrel{Y}{\leftarrow} \Set\emat$; but $\mathcal{T}-\Mod(\Set) \simeq \Set^{\Tbb'}$ for some finitary \gls{monad} $\Tbb'$ on $\Set$, so we get a \gls{func} $\Set\emat \stackrel{Y}{\to} \Set^{\Tbb'}$ which is the identity on underlying sets. In this situation, $Y$ is induced by a \emph{morphism of monads} $\Tbb' \to \Tbb$, i.e. a \gls{natt} $\theta : T' \to T$ commuting with the \glspl{unit} and multiplications. (Clearly, such a $\theta$ induces a \gls{func} $\Set\emat \to \Set^{\Tbb'}$ sending $(A, \alpha)$ to $(A, \alpha\theta_A)$). But we know $\theta_{[n]}$ is bijective for all $n$, since elements of the free algebras on $[n]$ are just morphisms $[1] \to [n]$ in $\mathcal{T}$. But both \glspl{func} are finitary, so $\theta_A$ is bijective for all $A$, i.e. it's an isomorphism of \glspl{monad}. \qedhere \end{enumerate} \end{proof} For a general \gls{monad} $\Tbb$ on $\Set$, this construction produces a finitary \gls{monad} $\Tbb'$ which is the co\gls{reflon} of $\Tbb$ in the \gls{cat} of finitary \glspl{monad}. For example: \begin{itemize} \item For $\Tbb = (\text{double power-set})$, we obtain $\Tbb' = \{\text{Boolean algebras}\}$. \item For $\Tbb = \text{Stone-\v{C}ech}$, we obtain the trivial \gls{monad} $(\identity{\Set}, \identity{\identity{\Set}}, \identity{\identity{\Set}})$. \end{itemize} \newpage \section{Regular Categories} \begin{fcdefn}[Image, cover] \glsnoundefn{image}{image}{images}% \glsnoundefn{cover}{cover}{covers}% \glssymboldefn{cover}% \label{defn:7.1} % Definition 7.1 We say a \gls{cat} $\mathcal{C}$ \emph{has images} if, for every $A \stackrel{f}{\to} B$ in $\mathcal{C}$, there exists a least $m : B' \monic B$ in $\Sub(B)$ through which $f$ factors. We call $m$ the \emph{image} of $f$, and we say $f$ is a \emph{cover} if its image is $\identity{B}$. We write $A \stackrel{f}{\rightarrowtriangle} B$ to indicate that $f$ is a cover. \end{fcdefn} \begin{fclemma}[] \label{lemma:7.2} % Lemma 7.2 Any strong \gls{epi} is a \gls{cover}. The converse holds if $\mathcal{C}$ has \glspl{equaler} and \glspl{pullb}. \end{fclemma} \begin{proof} If $f$ is strong \gls{epic}, applying the definition to commutative squares of the form \begin{picmath} \begin{tikzcd} A \ar[r, "g"] \ar[d, "f"] & B' \ar[d, "m", tail] \\ B \ar[r, "\identity{B}"] \ar[ru, dashed] & B \end{tikzcd} \end{picmath} shows that $f$ is a \gls{cover}. For the converse, a \gls{cover} $A \stackrel{f}{\to} B$ is \gls{epic} since it can't factor through the \gls{equaler} of any $B \twofuncs gh C$ with $g \neq h$. To verify the other condition, suppose given \begin{picmath} \begin{tikzcd}[ampersand replacement=\&] A \ar[r, "g"] \ar[d, "f", -{Triangle[open]}] \& C \ar[d, "m", tail] \\ B \ar[r, "h"] \ar[ru, dashed] \& D \end{tikzcd} \end{picmath} then the \gls{pullb} of $m$ along $h$ is \gls{monic} by \cref{lemma:4.15}, and $f$ factors through it, so it's an isomorphism. So we get $B \to C$ by composing with the top edge of the \gls{pullb} square. \end{proof} Here, if $\mathcal{C}$ has \glspl{image}, image facorisation defines a \gls{func} $\funccat[2, \mathcal{C}] \to \funccat[3, \mathcal{C}]$: given \begin{picmath} \begin{tikzcd} A \ar[r, "f"] \ar[d, "g"] & B \ar[d, "h"] \\ C \ar[r, "k"] & D \end{tikzcd} \end{picmath} if we form the image factorisations \begin{picmath} \begin{tikzcd} A \ar[d] \ar[r,-{Triangle[open]}] & I \ar[d, dashed] \ar[r, tail] & B \ar[d] \\ C \ar[r, -{Triangle[open]}] & J \ar[r, tail] & D \end{tikzcd} \end{picmath} we get a unique $I \to J$ making both squares commute. \begin{fcdefn}[Regular category] \glsadjdefn{regc}{regular}{\gls{cat}}% \label{defn:7.3} % Definition 7.3 We say $\mathcal{C}$ is \emph{regular} if it has finite \glspl{lim} and \glspl{image}, and image factorisations are stable under \gls{pullb}, i.e. if the left hand square above is a \gls{pullb} then so are both right hand squares. (This is equivalent to saying that \glspl{cover} are stable under \gls{pullb}). \end{fcdefn} \begin{example} \label{eg:7.4} % Example 7.4 \phantom{} \begin{enumerate}[(a)] \item $\Set$ is \gls{regc} and co\gls{regc}: all \glspl{mono} and \glspl{epi} are strong, and so the two factorisations coincide and \glspl{epi} (respectively \glspl{mono}) are stable under \gls{pullb} (respectively \gls{pushb}). \item If $\mathcal{C}$ is \gls{regc}, so is any $\funccat[\mathcal{D}, \mathcal{C}]$ with \glspl{image} constructed pointwise (they're stable under \gls{pushb} since \glspl{pullb} are also constructed pointwise). \item If $\mathcal{C}$ is \gls{regc}, then so $\mathcal{C}\emat$ for any \gls{monad} $\Tbb$ whose underlying \gls{func} $T$ \gls{preses} \glspl{cover}. If $f : (A, \alpha) \to (B, \beta)$ is a morphism of $\mathcal{C}\emat$ and $A \covers I \monic B$ is the image factorisation of $f$ in $\mathcal{C}$, then in \begin{picmath} \begin{tikzcd} TA \ar[r, -{Triangle[open]}] \ar[d, "\alpha"] & TI \ar[r] \ar[d, "\iota", dashed] & TB \ar[d, "\beta"] \\ A \ar[r, -{Triangle[open]}] & I \ar[r, tail] & B \end{tikzcd} \end{picmath} we get a unique $\iota$ making both squares commute, making $(I, \iota)$ into a $\Tbb$-algebra, and it's the image of $f$ in $\mathcal{C}\emat$. In particular, any \gls{cat} \gls{monadic} over $\Set$ is \gls{regc}.