%! TEX root = CT.tex % vim: tw=50 % 14/10/2024 09AM \begin{fcdefn}[Functor] % Definition 1.4 \glsnoundefn{func}{functor}{functors}% \glsadjdefn{funcal}{functorial}{NA}% \glssymboldefn{Cat}% Let $\mathcal{C}$ and $\mathcal{D}$ be \glspl{cat}. A \emph{functor} $F : \mathcal{C} \to \mathcal{D}$ consists of mappings $F : \ob \mathcal{C} \to \ob \mathcal{D}$ and $F + \mor \mathcal{C} \to \mor \mathcal{D}$ such that: \begin{citems} \item $F(\dom f) = \dom Ff$ \item $F(\cod f) = \cod Ff$ \item $F(\identity A) = \identity{FA}$ \item $F(fg) = (Ff)(Fg)$ whenever $fg$ is defined. \end{citems} We write $\textbf{Cat}$ for the \gls{cat} of \gls{small} \glspl{cat} and the functors between them. \end{fcdefn} \begin{example} \label{eg:1.5} % Example 1.5 \phantom{} \begin{enumerate}[(a)] \item We have \emph{forgetful} functors $\Gp \to \Set$, $\Rng \to \Set$, $\Top \to \Set$, \ldots{} or slightly more interestingly, $\Rng \to \mathbf{AbGp}$, $\Met \to \Top$, $\mathbf{TopGp} \to \Top$, $\mathbf{TopGp} \to \Gp$, \ldots \item The construction of free groups is a \gls{func} $\Set \to \Gp$: given a set $A$, $FA$ is the group freely generated by $A$, such that every mapping $A \to G$ where $G$ has a group structure extends uniquely to a homomorphism $FA \to G$. Given $A \stackrel{f}{\to} B$, we define $Ff : FA \to FB$ to be the unique homomorphism extending $A \stackrel{f}{\to} B \injto FB$. If we also have $B \stackrel{g}{\to} C$, $F(gf)$ and $(Fg)(Ff)$ are both homomorphisms extending $A \stackrel{f}{\to} B \stackrel{g}{\to} C \injto FC$. \item Given a set $A$, we define $PA$ to be the set of subsets of $A$. Given $f : A \to B$, we define $Pf : PA \to PB$ by $Pf(A') = {f(a) \st a \in A'} \subseteq B$. So $P$ is a \gls{func} $\Set \to \Set$. \item \glsadjdefn{cont}{contravariant}{\gls{func}}% But we also have a \gls{func} $P^* : \Set^\op \to \Set$ (or $\Set \to \Set^\op$): $P^* A = PA$ and, for $A \stackrel{f}{\to} B$, $G^* f : PB \to PA$ is given by $P^* f (B') = {a in A \st f(a) \in B'}$. We use the term ``contravariant \gls{func} $\mathcal{C} \to \mathcal{D}$'' for a \gls{func} $\mathcal{C} \to \mathcal{D} ^\op$. \item Given a vector space $V$ over $k$, we write $V^*$ for the space of linear maps $V \to k$. Given $f : V \to W$, we write $f^* : W^* \to V^*$ for the mapping $\theta \mapsto \theta f$. This defines a \gls{func} $(\bullet)^* : \Vect_k^\op \to \Vect_k$. \item The mapping $\mathcal{C} \mapsto \mathcal{C}^\op$, $F \mapsto F$ defines a \gls{func} $\Cat \to \Cat$. \item A \gls{func} between monoids is a monoid homomorphism; a \gls{func} between posets is a monotone map. \item Given a group $G$, a \gls{func} $G \to \Set$ is given by a set $A$ equipped with a $G$-action $(g, a) \mapsto g \cdot a$, i.e. a permutation representation of $G$. Similarly, a \gls{func} $G \to \Vect_k$ is a $k$-linear representation of $G$. \item The fundamental group construction is a \gls{func} $\Pi_1 : \Top_* \to \Gp$, where $\Top_*$ is the \gls{cat} of topological spaces with basepoints, and morphisms being the continuous maps which preserve the basepoints. \end{enumerate} \end{example} \begin{fcdefn}[Natural transformation] % Definition 1.6 \glsnoundefn{natt}{natural transformation}{natural transformations}% \glssymboldefn{funccat}% \glsadjdefn{naty}{naturality}{\gls{func}}% \glsnoundefn{natsq}{naturality square}{naturality squares}% \glsadjdefn{natal}{natural}{transformation}% Given \glspl{cat} $\mathcal{C}$ and $\mathcal{D}$, and two \glspl{func} $\mathcal{C} \twofuncs{F}{G} \mathcal{D}$, a \emph{natural transformation} $\alpha : F \to G$ assigns to each $A \in \ob \mathcal{C}$ a morphism $\alpha_A : FA \to GA$ in $\mathcal{D}$, such that for any $A \stackrel{f}{\to} B$ in $\mathcal{C}$, the square \begin{picmath} \begin{tikzcd} FA \ar[r, "Ff"] \ar[d, "\alpha_A"] &FB \ar[d, "\alpha_B"] \\ GA \ar[r, "Gf"] &GB \end{tikzcd} \end{picmath} commutes (we call this square the \emph{naturality square} for $\alpha$ at $f$). Given $\alpha$ as above, and $\beta : G \to H$, we define $\beta \alpha : F \to H$ by $(\beta \alpha)_A = \beta_A \alpha_A$. We write $[ \mathcal{C}, \mathcal{D}]$ for the \gls{cat} of functors $\mathcal{C} \to \mathcal{D}$ and natural transformations between them. \end{fcdefn} \begin{example} \label{eg:1.7} % Example 1.7 \phantom{} \begin{enumerate}[(a)] \item Given a vector space $V$, we have a linear map $\alpha_V : V \to V^{**}$ sending $v \in V$ to the linear form $\theta \mapsto \theta(v)$ on $V^{**}$. These maps define a natural transformation $\identity{\Vect_k} \to (\bullet)^{**}$. \item There is a natural transformation $\alpha : \identity{\Set} \to UF$, where $F$ is the free group functor and $U$ is the forgetful functor $\Gp \to \Set$, whose value at $A$ is the inclusion $A \injto UFA$. The naturality square \begin{picmath} \begin{tikzcd} A \ar[r, "f"] \ar[d, "\alpha_A"] &B \ar[d, "\alpha_B"] \\ UFA \ar[r, "UFf"] &UFB \end{tikzcd} \end{picmath} commutes by the definition of $Ff$. \item For any $A$, we have a mapping $\eta_A : A \to PA$ given by $A\eta_A(a) = \{a\}$. This is a natural transformation $\identity{\Set} \to P$ since $Pf(\{a\}) = \{f(a)\}$ for any $a \in A$. \item Given order-preserving maps $P \twofuncs{f}{g} Q$ between posets, there exists a unique natural transformation $f \to g$ if and only if $f(p) \le g(p)$ for all $P \in P$. \item Given two group homomorphisms $G \twofuncs{u}{v} H$, a natural transformation $u \to v$ is given by $h \in H$ such that $hu(g) = v(g) h$ for all $g \in G$, or equivalently $u(g) = h^{-1} v(g) h$, i.e. $u$ and $v$ are conjugate homomorphisms. In particular, the group of natural transformations $u \to u$ is the \emph{centraliser} of the image of $u$. \item If $A$ and $B$ are $G$-sets considered as functors $G \to \Set$, a natural transformation $f : A \to B$ is a $G$-invariant map, i.e. $f : A \to B$ such that $g f(a) = f(g a)$ for all $a \in A$, $g \in G$.