%! TEX root = CT.tex % vim: tw=50 % 22/11/2024 09AM \begin{fccoro}[] \label{coro:6.6} % Corollary 6.6 Assuming: - $\mathcal{C}$ a \gls{cat} of finitary algebras as in \cref{eg:5.14}(a) Thens:[(i)] - The forgetful \gls{func} $U : \mathcal{C} \to \Set$ \gls{creates} \gls{filted} \glspl{colim}. - \glsref[filted]{Filtered} \glspl{colim} \gls{lcomm} with finite \glspl{lim} in $\mathcal{C}$. \end{fccoro} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item This is just like \cref{eg:5.14}(a): Given a \gls{filted} \gls{diag} $D : J \to \mathcal{C}$ and a \gls{colim} for $UD$ with apex $L$, then $L^n$ is the \gls{colim} of $UD^n$ for all $n$, so each $n$-ary operation on the $D(j)$'s induces an $n$-ary operation on $L$, and $L$ also inherits all the equations defining $\mathcal{C}$, so there's a unique lifting of the \gls{colim} \gls{cone} under $UD$ to a \gls{colim} \gls{cone} for $D$. \item Follows from (i) and \cref{thm:6.5}, since $U$ also \gls{creates} finite \glspl{lim} (and \gls{reflects} isomorphisms). \qedhere \end{enumerate} \end{proof} Similar results hold for \glspl{cat} such as $\Cat$. \begin{example} \label{eg:6.7} % Example 6.7 Consider the \gls{diag} \begin{picmath} \begin{tikzcd} \cdots \ar[r, "s"] & \Nbb \ar[d] \ar[r, "s"] & \Nbb \ar[d] \ar[r, "s"] & \Nbb \ar[d] \\ \cdots \ar[r, "1"] & 1 \ar[r, "1"] & 1 \ar[r, "1"] & 1 \end{tikzcd} \end{picmath} of shape $\Nbb^\op \times \mathbf{2}$ in $\Set$. The \gls{invlim} of the top row is $\emptyset$, but that of the bottom row is $1$. So $\lim_{\Nbb^\op} \funccat[\Nbb^\op, \Set] \to \Set$ doesn't preserve \glspl{epi}; equivalently $\colim_{\Nbb} : \funccat[\Nbb, \Set^\op] \to \Set^{\op}$ doesn't preserve \glspl{mono}. Thus by \cref{remark:4.8}, \gls{dired} \glspl{colim} don't \gls{lcomm} with \glspl{pullb} in $\Set^\op$. \end{example} Given a \gls{func} $F : \mathcal{C} \to \Set$, the \emph{category of elements} of $F$ is $(1 \darr F)$: its objects are pairs $(A, x)$ with $x \in FA$ and morphisms $(A, x) \to (B, y)$ are morphisms $f : A \to B$ such that $(Ff)(x) = y$. \begin{fcprop}[] \label{prop:6.8} % Proposition 6.8 Assuming: - $\mathcal{C}$ a \gls{small} \gls{cat} - $\mathcal{C}$ has finite \glspl{lim} - $F : \mathcal{C} \to \Set$ a \gls{func} Then: the following are equivalent: \begin{cenum}[(i)] \item $F$ \gls{preses} finite \glspl{lim}. \item $(1 \darr F)$ is co\gls{filted}. \item $F$ is expresible as a \gls{filted} \gls{colim} of \gls{reple} \glspl{func}. \end{cenum} \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(ii) $\Rightarrow$ (ii)] \item[(i) $\Rightarrow$ (ii)] By \cref{lemma:4.10}, $(1 \darr F)$ has finite \glspl{lim} so $(1 \darr F)^\op$ is \gls{filted}. \item[(ii) $\Rightarrow$ (iii)] Consider the \gls{diag} $(1 \darr F)^\op \stackrel{U}{\to} \mathcal{C}^\op \stackrel{Y}{\to} \funccat[\mathcal{C}, \Set]$ where $U$ is the forgetful \gls{func} and $Y$ is the \gls{yonem}. A \gls{cone} under this \gls{diag} (with apex $G$, say) yields a family of morphisms $\mathcal{C}(A, \blank) \stackrel{\lambda_{(A, x)}}{\to} G$ for each $x \in FA$, subject to compatibility conditions which say that $(Gf) \Phi(\lambda_{(A, x)}) = \Phi(\lambda_{(B, y)})$ for every $f : (A, x) \to (B, y)$ in $(1 \darr F)$, i.e. such that $x \mapsto \Phi(\lambda_{(A, x)})$ is a \gls{natt} $F \to G$. So the \gls{cone} $(\mathcal{C}(A, \blank) \stackrel{\Psi(x)}{\to} F \mid (A, x) \in \ob(1 \darr F))$ has the universal property of a \gls{colim} for the \gls{diag}. \item[(iii) $\Rightarrow$ (i)] \glsref[func]{Functors} of the form $\mathcal{C}(A, \blank)$ preserve any \glspl{lim} which exist, so this follows from \cref{thm:6.5} plus the fact that \glspl{colim} in $\funccat[\mathcal{C}, \Set]$ are computed pointwise. \qedhere \end{enumerate} \end{proof} Given a \gls{cat} $\mathcal{C}$ with \gls{filted} \glspl{colim}, we say $F : \mathcal{C} \to \mathcal{D}$ is \emph{finitary} if it \gls{preses} \gls{filted} \glspl{colim}. If $\mathcal{C} = \Set$, then a finitary $F$ is determined by its restriction to $\Set_f$, since any set is the \gls{dired} union of its finite subsets. In fact the restriction \gls{func} $\funccat[\Set, \mathcal{D}] \to \funccat[\Set_f, \mathcal{D}]$ has a \gls{ladj} (the \emph{left Kan extension} \gls{func}) and the finitary \glspl{func} are those in the image of this \gls{ladj} (up to isomorphism). \glssymboldefn{Setf}% For a \gls{cat} $\mathcal{C}$ as in \cref{eg:5.14}(a) or \cref{coro:6.6}, the corresponding \gls{monad} $\Tbb$ on $\Set$ is finitary. From now on, $\Set_f$ will denote the \gls{skon} of the \gls{cat} of finite sets whose objects are the sets $[n] = \{1, 2, \ldots, n\}$. \begin{fcdefn}[Lawvere theory] \glsnoundefn{Lt}{Lawvere theory}{Lawvere theories}% \glsnoundefn{model}{model}{models}% \label{defn:6.9} % Definition 6.9 By a \emph{Lawvere theory}, we mean a \gls{small} \gls{cat} $\mathcal{T}$ together with a \gls{func} $\Setf \to \mathcal{T}$ which is bijective on objects and \gls{preses} finite \glspl{coprod}. A \emph{model} of a Lawvere theory $\mathcal{T}$ in any \gls{cat} $\mathcal{C}$ with finite products is a \gls{func} $M : \mathcal{T}^\op \to \mathcal{C}$ preserving finite \glspl{prod}. \end{fcdefn} For example, if $\Tbb$ is a \gls{monad} on $\Set$, the \gls{full} sub\gls{cat} of $\Set_{\Tbb}$ whose objects are the sets $[n]$ is a \gls{Lt}. \begin{fclemma}[] \label{lemma:6.10} % Lemma 6.10 Assuming: - $\mathcal{T}$ a \gls{Lt} Then: the \gls{cat} of $\mathcal{T}$-\glspl{model} in $\Set$ is (\gls{equivt} to) a finitary algebra \gls{cat} in the sense of \cref{eg:5.14}(a). \end{fclemma} \begin{proof} Given a \gls{model} $M : \mathcal{T}^\op \to \Set$, we have $M[n] \cong M[1]^n$ for all $n$. Also, any morphism $M[1]^n \to M[1]^p$ induced by a morphism $[p] \to [n]$ in $\mathcal{T}$ is determined by its composites with the projections $M[1]^p \to M[1]$, so specifying $M$ on morphisms is determined by its effect on morphisms with domain $[1]$. So, given a set $A$, specifying a \gls{model} $M$ with $M[1] = A$ is equivalent to specifying operations $\alpha_A : A^n \to A$ for each $\alpha : [1] \to [n]$ in $\mathcal{T}$, subject to $(v_i)_A(a_1, \ldots, a_n) = a_i$ whenever $v_i : [1] \to [n]$ is the $i$-th coprojection, and \begin{picmath} \begin{tikzcd} A^p \ar[r, "((\beta_1)_A{,} \ldots{,} (\beta_n)_A)"] \ar[rd, "\gamma_A"] & A^n \ar[d, "\alpha_A"] \\ & A \end{tikzcd} \end{picmath} commutes whenever \begin{picmath} \begin{tikzcd} {[}1] \ar[r, "\alpha"] \ar[rd, "\sigma"] & {[}n] \ar[d, "(\beta_1{,} \ldots{,} \beta_n)"] \\ & {[}p] \end{tikzcd} \end{picmath} commutes. \end{proof}