%! TEX root = CT.tex % vim: tw=50 % 20/11/2024 09AM \newpage \section{Filtered Colimits} \begin{fcdefn}[Filtered] \label{defn:6.1} \glsadjdefn{filted}{filtered}{\gls{cat}}% % Definition 6.1 We say a \gls{cat} $\mathcal{C}$ is \emph{filtered} if every finite \gls{diag} $D : J \to \mathcal{C}$ has a \gls{cone} under it. \end{fcdefn} \begin{lemma}[] \label{lemma:6.2} % Lemma 6.2 \cloze{$\mathcal{C}$ is \gls{filted}} if and only if: \begin{cenum}[(i)] \item $\mathcal{C}$ is nonempty. \item Given $A, B \in \ob \mathcal{C}$, there exists a \gls{cospan} $A \to C \leftarrow B$. \item Given $A \twofuncs fg B$ in $\mathcal{C}$, there exists $B \stackrel{h}{\to} C$ with $hf = hg$. \end{cenum} \end{lemma} \begin{iffproof} \rightimpl Since each of (i) - (iii) is a special case of \cref{defn:6.1}. \leftimpl (i) deals with the empty \gls{diag}. Given $D : J \to \mathcal{C}$ with $J$ finite and non-empty, by repeated use of (ii) we can find $A$ with morphisms $D(j) \to A$ for all $j$. Then by repeated use of (ii) we can find $A \to B$ \glsref[coequaler]{coequalising} \begin{picmath} \begin{tikzcd} & D(j') \ar[dr] \\ D(j) \ar[ur, "D(\alpha)"] \ar[rr] & & A \end{tikzcd} \end{picmath} for each $\alpha \in \mor J$. \end{iffproof} \glsadjdefn{dired}{directed}{preorder}% For preorders, we say \emph{directed} instead of \gls{filted}. \begin{fcdefn}[Has filtered colimits] \glsadjdefn{hfc}{has filtered colimits}{\gls{cat}}% \label{defn:6.3} % Definition 6.3 We say \emph{$\mathcal{C}$ has filtered colimits} if every $D : J \to \mathcal{C}$, where $J$ is \gls{small} and \gls{filted}, has a colimit. \end{fcdefn} Note that \glspl{dirlim} as in \cref{eg:4.3}(g) are \gls{dired} \glspl{colim}. \begin{fclemma}[] \label{lemma:6.4} % Lemma 6.4 Assuming: - $\mathcal{C}$ has finite \glspl{colim} - $\mathcal{C}$ has \gls{dired} \glspl{colim} Then: $\mathcal{C}$ has all \gls{small} \glspl{colim}. \end{fclemma} \begin{proof} By \cref{prop:4.4}(i), enough to show $\mathcal{C}$ has all \gls{small} \glspl{coprod}. Given a set-indexeud family $(A_j \mid j \in J)$ of objects, the finite \glspl{coprod} $\sum_{j \in F} A_j$, for $F \subseteq J$ finite, form the vertices of a diagram of shape $P_f J = \{F \subseteq J \mid F \text{finite}\}$ whose edges are coprojections. $P_f J$ is \gls{dired}, and a \gls{colim} for this \gls{diag} has the universal property of a \gls{coprod} $\sum_{j \in J} A_j$. \end{proof} Suppose given a $D : I \times J \to \mathcal{C}$, where $\mathcal{C}$ has \glspl{lim} of shape $I$ and \glspl{colim} of shape $J$. \begin{picmath} \begin{tikzcd} L(j) \ar[dd] \ar[ddd, bend right=45] \ar[r, "L(\beta)"] & L(j') \ar[dd] \ar[ddd, bend left=45] \ar[r] & \colim_J L \ar[rd] \\ & & & \lim_I M \ar[d] \ar[dd, bend left=30] \\ D(i, j) \ar[r, "D(i{,} \beta)"] \ar[d, "D(\alpha{,} j)"] \ar[rrr, bend left=30] & D(i, j') \ar[d, "D(\alpha{,} j')", swap] \ar[rr] & & M(i) \ar[d, "M(\alpha)", swap] \\ D(i', j) \ar[r, "D(i'{,} \beta)"] \ar[rrr, bend right=30] & D(i', j') \ar[rr] & & M(i') \end{tikzcd} \end{picmath} We can form $L(j) = \lim_I (D(\bullet, j) : I \to \mathcal{C})$, by \cref{eg:4.7}(e) these are the \glspl{vert} of a \gls{diag} $L : J \to \mathcal{C}$, and we can form $\colim_J L$. \glsadjdefn{lcomm}{commute}{\glspl{lim}}% Similarly, the \glspl{colim} $M(i) = \colim_J D(i, \bullet)$ form a \gls{diag} of shape $I$, and we can form $\lim_I M$. We get an induced morphism $\colim_J L \to \lim_I M$; if this is an isomorphism for all $D : I \times J \to \mathcal{C}$, we say \glspl{colim} of shape $J$ \emph{commute with} \glspl{lim} of shape $I$ in $\mathcal{C}$. Equivalently, $\colim_J : \funccat[J, \mathcal{C}] \to \mathcal{C}$ \gls{preses} \glspl{lim} of shape $I$, or $\lim_I : \funccat[I, \mathcal{C}] \to \mathcal{C}$ \gls{preses} \glspl{colim} of shape $J$. In \cref{remark:5.13}(d) we saw that \gls{pprefl} \glspl{coequaler} commute with finite products in $\Set$. \begin{fcthm}[] \label{thm:6.5} % Theorem 6.5 Assuming: - $J$ a \gls{small} \gls{cat} Then: \begin{iffc} \lhs \glspl{colim} of shape $J$ \gls{lcomm} with all finite \glspl{lim} in $\Set$ \rhs $J$ is \gls{filted}. \end{iffc} \end{fcthm} \begin{iffproof} \rightimpl Let $D : I \to J$ be a \gls{diag} with $I$ finite. We have a \gls{diag} $E : I^\op \times J \to \Set$ defined by $E(i, j) = J(D(i), j)$. For each $i$, $(\colim_J E)(i)$ is a singleton since every $D(i) \to j$ is identified with $\identity{D(i)}$ in the \gls{colim}, so $\lim_I \colim_J E$ is a singleton. But elements of $\lim_I E(\bullet, j)$ are \glspl{cone} under $D$ with apex $j$, so if $\colim_J \lim_I E$ is nonempty there must be such a \gls{cone} for some $j$. \leftimpl Suppose given $D : I \times J \to \Set$ where $I$ is finite and $J$ is \gls{filted}. In general, the \gls{colim}of $E : J \to \Set$ is the quotient of $\coprod_{j \in \ob J} E(j)$ by the smallest equivalence relation identifying $x \in E(j)$ with $D(\alpha)(x) \in E(j')$ for all $\alpha : j \to j'$ in $J$. For \gls{filted} $J$, this identifies $x \in E(j)$ with $x' \in E(j')$ if and only if there exists $j \stackrel{\alpha}{\to} j'' \stackrel{\alpha'}{\leftarrow} j'$ with $E(\alpha)(x) = E(\alpha')(x')$, and moreover if $j = j'$ we may assume $\alpha = \alpha'$. Now, given an element $x$ of $\lim_I \colim_J D$, we can write it as $(x_i \mid i \in \ob I)$ where $x_i \in \colim_J D(i, \bullet)$ is an equivalence class of elements $x_{ij} \in D(i, j)$. If $\alpha : i \to i'$ in $I$, then $D(\alpha, j)(x_ij)$ and $x_{i'j'}$ represent the same element of $\colim_J D(i', \bullet)$ so by repeated use of \cref{lemma:6.2}(ii) we can choose representatives in $D(i, j_0)$ for some fixed $j_0$, and by repeated use of \cref{lemma:6.2}(iii) we can assume that these representatives define an element of $\lim_I D(\bullet, j_0)$. This defines an element of $\colim_J \lim_I D$ mapping to the given element of $\lim_I \colim_J D$. The proof of injectivity is similar: if two elements $x, y$ of $\colim_J \lim_I D$ have the same image in $\lim_I \colim_J D$ we can choose representatives $x_j, y_j$ in $\lim_I D(\bullet, j)$ and then find $j \to j'$ so that each of the components $x_{ij}$ and $y_{ij}$ map to the same element of $D(i, j')$ under $j \to j'$. So $x = y$ in $\colim_J \lim_I D$. \end{iffproof} % \begin{corollary} % \label{coro:6.6} % % Corollary 6.6 % If $\mathcal{C}$ is a \gls{cat} of finitary % algebras as in \cref{eg:5.14}(a), then % \begin{enumerate}[(i)] % \item The forgetful \gls{func} $\mathcal{C} % \to \Set$ \gls{creates} \gls{filted} % \glspl{colim}. % \item \glsref[filted]{Filtered} \glspl{colim} % \gls{lcomm} with finite \glspl{lim} in % $\mathcal{C}$. % \end{enumerate} % \end{corollary}