%! TEX root = CT.tex % vim: tw=50 % 18/11/2024 09AM \item If $A \twofuncs fg B$ is \gls{pprefl}, then in any commutative square \begin{picmath} \begin{tikzcd} A \ar[r, "f"] \ar[d, "g"] & B \ar[d, "h"] \\ B \ar[r, "k"] & C \end{tikzcd} \end{picmath} we have $h = hfr = kgr = k$. So a \gls{pushb} for \begin{picmath} \begin{tikzcd} A \ar[r, "f"] \ar[d, "g"] & B \\ B \end{tikzcd} \end{picmath} is a \gls{coequaler} for $A \twofuncs fg B$. \item In $\Set$, or more generally in a \gls{cc} \gls{cat}, if $A_i \twofuncs{f_i}{g_i} B_i \stackrel{h_i}{\to} C_i$ ($i = 1, 2$) are \gls{pprefl} \glspl{coequaler}, then $A_1 \times A_2 \twofuncs{f_1 \times f_2}{g_1 \times g_2} B_1 \times B_2 \stackrel{h_1 \times h_2}{\to} C_1 \times C_2$ is also a \gls{coequaler}. To see this, consider \begin{picmath} \begin{tikzcd} A_1 \times A_2 \ar[r, shift right=3pt] \ar[r, shift left=3pt] \ar[d, shift right=3pt] \ar[d, shift left=3pt] & A_1 \times B_2 \ar[r] \ar[d, shift right=3pt] \ar[d, shift left=3pt] & A_1 \times C_2 \ar[d, shift right=3pt] \ar[d, shift left=3pt] \\ B_1 \times A_2 \ar[r, shift right=3pt] \ar[r, shift left=3pt] \ar[d] & B_1 \times B_2 \ar[r] \ar[d] & B_1 \times C_2 \ar[d] \\ C_1 \times A_2 \ar[r, shift right=3pt] \ar[r, shift left=3pt] & C_1 \times B_2 \ar[r] & C_1 \times C_2 \end{tikzcd} \end{picmath} in which all rows and columns are \glspl{coequaler}. Then the lower right square is a \gls{pushb}; but if $B_1 \times B_2 \stackrel{k}{\to} D$ \glsref[coequaler]{coequalises} $A_1 \times A_2 \twofuncs{f_1 \times f_2}{g_1 \times g_2} B_1 \times B_2$, then is also \glsref[coequaler]{coequalises} $A_1 \times B_2 \twofuncs{}{} B_1 \times B_2$ and $B_1 \times A_2 \twofuncs{}{} B_1 \times B_2$, so if factors through the top and left edges of the lower right square, and hence through $B_1 \times B_2 \stackrel{h_1 \times h_2}{\to} C_1 \times C_2$. \end{enumerate} \end{remark} \begin{example} \label{eg:5.14} % Example 5.14 \phantom{} \begin{enumerate}[(a)] \item The forgetful \gls{func} $\Gp \to \Set$ is \gls{monadic}, and satisfies the hypotheses of \cref{thm:5.12}. If $G \twofuncs fg H$ is a \gls{pprefl} pair in $\Gp$, with \gls{coequaler} $H \stackrel{h}{\to} K$ in $\Set$, then $G \times G \twofuncs{}{} H \times H \to K \times K$ is a \gls{coequaler}, so the multiplication $H \times H \to H$ induces a binary operation $K \times K \to K$, which is the unique group multiplication on $K$ making $h$ a homomorphism, and it makes $h$ into a \gls{coequaler} in $\Gp$. The same argument works for $\AbGp$, $\Rng$, $\Lat$, $\DLat$, \ldots. It doesn't work for \glspl{cat} like $\CSLat$ or $\CLat$, but here we can use \cref{thm:5.11} \emph{provided} the forgetful \gls{func} has a \gls{ladj}. \item Any \gls{reflon} is \gls{monadic}: this can be proved using \cref{thm:5.11}. If $\mathcal{D} \subseteq \mathcal{C}$ is a \gls{reflsub}, and $A \twofuncs fg B$ is a pair in $\mathcal{D}$ for which there exists \begin{picmath} \begin{tikzcd} A \ar[r, shift left=3pt, "f"] \ar[r, shift right=3pt, "g", swap] & B \ar[r, "h"] \ar[l, "t", bend left=45] & C \ar[l, "s", bend left=30] \end{tikzcd} \end{picmath} in $\mathcal{C}$ satisfying the equaitions of \cref{defn:5.10}(b), then $t \in \mor \mathcal{D}$ since $\mathcal{D}$ is \gls{full}, so $ft = sh$ is in $\mathcal{D}$, but $\mathcal{D}$ is closed under splittings of idempotents by \cref{eg:4.7}(d), so $h$ belongs to it. \item Consider the composite \gls{adjunc} \begin{picmath} \begin{tikzcd} \Set \ar[r, shift left=3pt, "F"] & \AbGp \ar[r, shift left=3pt, "L"] \ar[l, shift left=3pt, "G"] & \tfAbGp \ar[l, shift left=3pt, "I"] \end{tikzcd} \end{picmath} where $(L \adjoint I)$ is the \gls{adjunc} of \cref{eg:3.11}(b). The two factors are \gls{monadic}, but the composite isn't since free abelian groups are torsion free, so $GILF \simeq GF$ and its \gls{cat} of algebras is $\cong \AbGp$. \item The contravariant power-set \gls{func} $P^* : \Set^\op \to \Set$ is \gls{monadic}, and satisfies the hypotheses of \cref{thm:5.12}. Its \gls{ladj} is $P^* : \Set \to \Set^\op$ by \cref{eg:3.2}(i), and it \gls{reflects} isomorphisms by \cref{eg:2.9}(a). Let $E \stackrel{e}{\to} A \twofuncs fg B$ be a co\gls{pprefl} \gls{equaler} \gls{diag} in $\Set$. Then \begin{picmath} \begin{tikzcd} E \ar[r, "e"] \ar[d, "e"] & A \ar[d, "f"] \\ A \ar[r, "g"] & B \end{tikzcd} \end{picmath} is a \gls{pullb} by \cref{remark:5.13}(c), so \begin{picmath} \begin{tikzcd} PE \ar[d, "Pe"] & PA \ar[l, "P^*e"] \ar[d, "Pf"] \\ PA & PB \ar[l, "P^*g"] \end{tikzcd} \end{picmath} commutes. But we also have $(P^*e)(Pe) = \identity{PE}$ and $(P^*f)(Pf) = \identity{PB}$ since $e$ and $f$ are injective, so \begin{picmath} \begin{tikzcd} PA \ar[r, shift left=3pt, "P^* g"] \ar[r, shift right=3pt, swap, "P^* f"] & P^* B \ar[r, "P^* e"] \ar[l, "Pf", bend left=45] & PE \ar[l, "Pe" bend left=30] \end{tikzcd} \end{picmath} is a \gls{splitcoeq} \gls{diag}. \item The fogetful \gls{func} $\Top \stackrel{U}{\to} \Set$ is not \gls{monadic}; the \gls{monad} on $\Set$ induced by $(D \adjoint U)$ is $(\identity{\Set}, \identity{\identity{\Set}}, \identity{\identity{\Set}})$ so its \gls{cat} of algebras is $\cong \Set$. \item The composite \gls{adjunc} \begin{picmath} \begin{tikzcd} \Set \ar[r, shift left=3pt, "D"] & \Top \ar[r, shift left=3pt, "B"] \ar[l, shift left=3pt, "U"] & \KHaus \ar[l, shift left=3pt, "I"] \end{tikzcd} \end{picmath} is \gls{monadic}. We'll prove this using \cref{thm:5.11}: suppose given $X \twofuncs fg Y$ in $\KHaus$ and a \gls{splitcoeq} \begin{picmath} \begin{tikzcd} UX \ar[r, shift left=3pt, "Uf"] \ar[r, shift right=3pt, swap, "Ug"] & UY \ar[r, "h"] \ar[l, "t", bend left=45] & Z \ar[l, "s" bend left=30] \end{tikzcd} \end{picmath} in $\Set$. The quotient topology on $Z$ is the unique topology making $h$ into a \gls{coequaler} in $\Top$, and it's compact, so $h$ will be a \gls{coequaler} in $\KHaus$ provided $Z$ is Hausdorff. It is also the unique topology that could make $h$ into a morphism of $\KHaus$. But, given an equivalence relation $S$ on a compact Hausdorff space $Y$, $Y / S$ is Hausdorff if and only if $S$ is closed in $Y \times Y$. In our case, if $(y_1, y_2) \in S$ (i.e. $h(y_1) = h(y_2)$) then $x_1 = t(y_1)$ and $x = t(y_2)$ satisfy $g(t_1) = y_1$, $g(x_2) = y_2$ and $f(x_1) = f(x_2)$. Conversely, if we have $x_1$ and $x_2$ as above, then $h(y_1) = h(y_2)$, so $S = g \times g(R)$ where $R \subseteq X \times X$ is $\{(x_1, x_2) \st f(x_1) = f(x_2)\}$. But $R$ is closed in $X \times X$ since it's the \gls{equaler} of $X \times X \twofuncs{f\pi_1}{f\pi_2} Y$. So $R$ is compact, so $S$ is compact, so $S$ is closed in $Y \times Y$. \end{enumerate} \end{example} \begin{fcdefn}[Monadic tower] \label{defn:5.15} % Definition 5.15 Let $\mathcal{C} \funcslr FG \mathcal{D}$ be an \gls{adjunc} where $\mathcal{D}$ has \gls{pprefl} \glspl{coequaler}. The \emph{monadic tower} of $(F \adjoint G)$ is the \gls{diag} \begin{picmath} \begin{tikzcd} & \vdots \\ & (\mathcal{C}\emat)^{\mathbb{S}} \ar[ld, shift left=2pt] \\ \mathcal{D} \ar[rd, "G", shift left=2pt] \ar[r, "K", shift left=2pt] \ar[ru, shift left=2pt] & \mathcal{C}\emat \ar[l, "L", shift left=2pt] \\ & \mathcal{C} \ar[ul, "F", shift left=2pt] \end{tikzcd} \end{picmath} where $\Tbb$ is the \gls{monad} induced by $(F \adjoint G)$, and $K$ and $L$ are as in \cref{thm:5.7} and \cref{lemma:5.9}, and $\mathbb{S}$ is the \gls{monad} induced by $(L \adjoint K)$ and so on. We say $(F \adjoint G)$ has \emph{monadic length} $n$ if we reach an equivalence after $n$ steps. \end{fcdefn}