%! TEX root = CT.tex % vim: tw=50 % 15/11/2024 09AM \begin{fclemma}[] \label{lemma:5.9} % Lemma 5.9 Assuming: - $\mathcal{C} \funcslr FG \mathcal{D}$ is an \gls{adjunc} inducing the \gls{monad} $\Tbb$ on $\mathcal{C}$ - for every $\Tbb$ algebra $(A, \alpha)$, the pair $FGFA \twofuncs{F\alpha}{\eps_{FA}} FA$ has a \gls{coequaler} in $\mathcal{D}$ Then: $K : \mathcal{D} \to \mathcal{C}\emat$ has a \gls{ladj} $L$. \end{fclemma} \begin{proof} Write $FA \stackrel{\lambda_{(A, \alpha)}}{\to} L(A, \alpha)$ for the \gls{coequaler}. For any homomorphism $f : (A, \alpha) \to (B, \beta)$ the two left hand squares in \begin{picmath} \begin{tikzcd} FGFA \ar[r, "F\alpha", shift left=3pt] \ar[r, "\eps_{FA}", swap, shift right=3pt] \ar[d, "FGFf", swap] & FA \ar[r, "\lambda_{(A, \alpha)}"] \ar[d, "Ff"] & L(A, \alpha) \ar[d, dashed, "Lf"] \\ FGFB \ar[r, "F\beta", shift left=3pt] \ar[r, "\eps_{FB}", swap, shift right=3pt] & FB \ar[r, "\lambda_{(B, \beta)}"] & L(B, \beta) \end{tikzcd} \end{picmath} commute, so we get a unique $Lf$ making the right hand square commute. As usual, uniqueness implies functoriality of $L$. For any $B \in \ob \mathcal{D}$, morphisms $L(A, \alpha) \to B$ correspond to morphisms $FA \stackrel{f}{\to} B$ satisfying $f(F\alpha) = f\eps_{FA}$. If $\ol{f} : A \to GB$ is the transpose of $f$ across $(F \adjoint G)$, then $f(F\alpha)$ transposes to $\ol{f}\alpha : GFA \to GB$, whereas $f\eps_{FA}$ transposes to $Gf$. But we can write $f = \eps_B(F\ol{f})$ by the proof of \cref{thm:3.7}, so $Gf = (G\eps_B)(GF\ol{f})$. So $f(F\alpha) = f\eps_{FA}$ if and only if \begin{picmath} \begin{tikzcd} GFA \ar[r, "GF\ol{f}"] \ar[d, "\alpha"] & GFGB \ar[d, "G\eps_B"] \\ A \ar[r, "\ol{f}"] & GB \end{tikzcd} \end{picmath} commutes, which happens if and only if $\ol{f} : (A, \alpha) \to KB$ in $\mathcal{C}\emat$. Naturality of the bijection follows from that of $f \mapsto \ol{f}$. \end{proof} Note that since $G\Tbb K = G$, we have $LF\emat \cong F$ by \cref{coro:3.6}, and $L$ \gls{preses} \glspl{coequaler}. \begin{fcdefn}[Reflexive / split coequaliser diagram / $G$-split] \label{defn:5.10} \glsadjdefn{pprefl}{reflexive}{parallel pair}% \glsnoundefn{splitcoeq}{split coequaliser}{split coequalisers}% \glsadjdefn{gsplit}{$G$-split}{pair}% % Definition 5.10 \phantom{} \begin{cenum}[(a)] \item We say a parallel pair $A \twofuncs fg B$ is \emph{reflexive} if there exists $r : B \to A$ with $fr = gr = \identity{B}$. Note that $FGFA \twofuncs{F\alpha}{\eps_{FA}} FA$ is reflexive, with common right inverse $FA \stackrel{F\eta_A}{\to} FGFA$. \item By a \emph{split coequaliser diagram}, we mean a diagram \begin{picmath} \begin{tikzcd} A \ar[r, "f", shift left=3pt] \ar[r, "g", swap, shift right=3pt] & B \ar[r, "h"] \ar[l, bend left=50, "t"] & C \ar[l, bend left=30, "s"] \end{tikzcd} \end{picmath} satisfying $hf = hg$, $hs = \identity{C}$, $gt = \identity{B}$ and $ft = sh$. If these hold, then $h$ is a \gls{coequaler} of $(f, g)$ since if $B \stackrel{k}{\to} D$ satisfies $kf = kg$ then $k = kgt = kft = ksh$, so $k$ factors through $h$, and the factorisation is unique since $h$ is (\gls{splitme}) \gls{epic}. Note that \emph{any} \gls{func} \gls{preses} split coequalisers. \item Given $G : \mathcal{D} \to \mathcal{C}$, we say a pair $A \twofuncs fg B$ in $\mathcal{D}$ is \emph{$G$-split} if there's a split coequaliser diagram \begin{picmath} \begin{tikzcd} GA \ar[r, "Gf", shift left=3pt] \ar[r, "Gg", swap, shift right=3pt] & GB \ar[r, "h"] \ar[l, bend left=50, "t"] & C \ar[l, bend left=30, "s"] \end{tikzcd} \end{picmath} in $\mathcal{C}$. The pair $(F\alpha, \eps_{FA})$ in \cref{lemma:5.9} is $G$-split, since \begin{picmath} \begin{tikzcd} GFGFA \ar[r, "GF\alpha", shift left=3pt] \ar[r, "G\eps_{FA}", swap, shift right=3pt] & GFA \ar[r, "\alpha"] \ar[l, bend left=50, "\eta_{GFA}"] & A \ar[l, bend left=30, "\eta_A"] \end{tikzcd} \end{picmath} is a split coequaliser diagram in $\mathcal{C}$. \end{cenum} \end{fcdefn} \begin{fcthm}[Precise Monadicity Theorem] \label{thm:5.11} % Theorem 5.11 \begin{iffc} \lhs A \gls{func} $G : \mathcal{D} \to \mathcal{C}$ is \gls{monadic} \rhs $G$ has a \gls{ladj} and \gls{creates} \gls{coequaler} of \gls{gsplit} pairs in $\mathcal{D}$. \end{iffc} \end{fcthm} \begin{fcthm}[Crude Monadicity Theorem] \label{thm:5.12} % Theorem 5.12 Assuming: - $G : \mathcal{D} \to \mathcal{C}$ \gls{preses} \gls{pprefl} \glspl{coequaler} - $G$ has a \gls{ladj} - $G$ \gls{reflects} isomorphisms Then: $G$ is \gls{monadic}. \end{fcthm} \begin{proof} \phantom{} \begin{enumerate}[(5.11 $\Leftarrow$ and 5.12)] \item[(\ref{thm:5.11}, $\Rightarrow$)] Necessity of $F \adjoint G$ is obvious. For the other condition, it's enough to show that $G\emat : \mathcal{C}\emat \to \mathcal{C}$ \gls{creates} \glspl{coequaler} of \gsplit{G\emat} pairs. This is a re-run of \cref{prop:5.8}(ii): if $(A, \alpha) \twofuncs fg (B, \beta)$ are such that \begin{picmath} \begin{tikzcd} A \ar[r, "f", shift left=3pt] \ar[r, "g", swap, shift right=3pt] & B \ar[r, "h"] \ar[l, "t", bend left=50] & C \ar[l, "s", bend left=30] \end{tikzcd} \end{picmath} is a \gls{splitcoeq} diagram, the \gls{coequaler} is preserved by $T$ and by $TT$, so $C$ acquires a unique algebra structure $TC \stackrel{\gamma}{\to} C$ making $h$ a homomorphism, and $h$ is a \gls{coequaler} in $\mathcal{C}\emat$. \item[(\ref{thm:5.11} $\Leftarrow$ and \ref{thm:5.12})] Either set of hypotheses implies that $\mathcal{D}$ has the \glspl{coequaler} needed for \cref{lemma:5.9}, so $K$ has a \gls{ladj} $L$. So we need to show that the \gls{unit} and \gls{counit} of $(L \adjoint K)$ are isomorphisms. The \gls{unit} $(A, \alpha) \to KL(A, \alpha)$ is the factorisation of $G\lambda_{(A, \alpha)} : GFA \to GL(A, \alpha)$ through the (\gsplit{G\emat}) \gls{coequaler} $GFA \stackrel{\alpha}{\to} A$ of $GFGFA \twofuncs{GF\alpha}{G\eps_{FA}} GFA$. But either set of hypothesis implies that $G$ \gls{preses} the \gls{equaler} of $(F\alpha, \eps_{FA})$, so this factorisation is an isomorphism. The \gls{counit} $LKB \to B$ is the factorisation of $FGB \stackrel{\eps_B}{\to} B$ through the \gls{coequaler} of $FGFGB \twofuncs{FG\eps_B}{\eps_{FGB}} FGB$. The hypotheses of \cref{thm:5.11} imply that $\eps_B$ is a \gls{coequaler} of this pair, so the \gls{counit} is an isomorphism. Those of \cref{thm:5.12} imply that the factorisation is mapped to an isomorphism by $G$, so it's an isomorphism. \qedhere \end{enumerate} \end{proof} \begin{remark} \label{remark:5.13} % Remark 5.13 \phantom{} \begin{enumerate}[(1)] \item \glsref[pprefl]{Reflexive} \glspl{coequaler} are \glspl{colim} of shape $J$, where $J$ is the \gls{cat} \begin{picmath} \begin{tikzcd} A \ar[r, "f", shift left=6pt] \ar[r, "g", swap, shift right=6pt] \ar[loop, in=90, out=130, looseness=5, "s"] \ar[loop, in=270, out=230, looseness=5, "t", swap] & B \ar[l, "r", shift right=2pt] \end{tikzcd} \end{picmath} satisfying $fr = gr = \identity{}$, $rf = s$ and $rg = t$. \item All \glspl{colim} can be constructed from \glspl{coprod} and \gls{pprefl} \glspl{coequaler}. This was proved in \cref{prop:4.4}: the pair $P \twofuncs fg Q$ appearing in that proof is co\gls{pprefl} with common left inverse $r : Q \to P$ defined by $\pi_j r = \pi_{\identity{j}}$ for all $j$.