%! TEX root = CT.tex % vim: tw=50 % 13/11/2024 09AM \glssymboldefn{Adj}% Given a \gls{monad} $\Tbb$ on $\mathcal{C}$, we write $\Adjinternal(\Tbb)$ for the \gls{cat} whose objects are \glspl{adjunc} $(\mathcal{C} \funcslr FG \mathcal{D})$ inducing $\Tbb$, and morphisms $(\mathcal{C} \funcslr FG \mathcal{D}) \to (\mathcal{C} \funcslr{F'}{G'} \mathcal{D}')$ are \glspl{func} $\mathcal{D} \stackrel{K}{\to} \mathcal{D}'$ satisfying $KF = F'$ and $G'K = G$. \begin{fcthm}[] \label{thm:5.7} % Theorem 5.7 The \gls{kls} \gls{adjunc} $(\mathcal{C} \funcslr{}{} \mathcal{C}\kct)$ is an \gls{iobj} of $\Adj(\Tbb)$, and the \gls{emoo} \gls{adjunc} $(\mathcal{C} \funcslr{}{} \mathcal{C}\EMaT$ is \gls{terminal}. \end{fcthm} \begin{proof} Suppose given $(\mathcal{C} \funcslr FG \mathcal{D})$ in $\Adj(\Tbb)$. We define $K : \mathcal{D} \to \mathcal{C}\EMaT$ by $KB = (GB, G\eps_B)$ (an algebra by one of the triangular identities for $\eta$ and $\eps$, and \gls{naty} of $\eps$), $K(B \stackrel{g}{\to} B') = Gg$ (a homomorphism by \gls{naty} of $\eps$). $K$ is \gls{funcal} since $G$ is, $G\EMaT K = G$ is obvious, and $KFA = (GFA, G\eps_{FA}) = (TA, \mu_A) = F\EMaT A$. So $K$ is a morphism of $\Adj(\Tbb)$. Suppose $K' : \mathcal{D} \to \mathcal{C}\EMaT$ is another such: then we must have $K'B = (GB, \beta_B)$ where $\beta : GFG \to G$ is a \gls{natt} since $K'g = Gg$ is a homomorphism $K'B \to K'B'$ for all $g : B \to B'$. Also, since $K'F = F\EMaT$, we have $\beta_{FA} = \mu_A = G \eps_{FA}$ for all $A$. For any $B$, we have \glspl{natsq} \begin{picmath} \begin{tikzcd} GFGFGB \ar[r, "GFG\eps_B"] \ar[d, shift right=5pt, swap, "G\eps_{FGB}"] \ar[d, shift left=5pt, "\beta_{FGB}"] & GFGB \ar[d, shift right=5pt, swap, "G\eps_B"] \ar[d, shift left=5pt, "\beta_B"] \\ GFGB \ar[r, "G\eps_B"] & GB \end{tikzcd} \end{picmath} whose left edges are equal, and whose top edge is \gls{splitme} \gls{epic}, so we obtain $G\eps_B = \beta_B$ for all $B$. So $K' = K$. We define $H : \mathcal{C}\kct \to \mathcal{D}$ by $HA = FA$ and $H(A \kto[f] B) = FA \stackrel{Ff}{\to} FGFB \stackrel{\eps_{FB}}{\to} FB$. $H$ preserves identities and satisfies $HF\kct = F$, by the first triangular identity for $\eta$ and $\eps$. $H$ preserves the composite $A \kto[f] B \kto[g] C$ by \begin{picmath} \begin{tikzcd} FA \ar[r, "Ff"] & FGFB \ar[r, "FGFg"] \ar[d, "\eps_{FB}"] & FGFGFC \ar[r, "FG\eps_{FC}"] \ar[d, "\eps_{FGFC}"] & FGFC \ar[d, "\eps_{FC}"] \\ & FB \ar[r, "Fg"] & FGFC \ar[r, "\eps_{FC}"] & FC \end{tikzcd} \end{picmath} Also $GHA = GFA = TA = G\kct A$ and \[ GH(A \kto[f] B) = (TA \stackrel{Tf}{\to} TTB \stackrel{\mu_B}{\to} TB) = G\kct(A \stackrel{f}{\to} B) .\] So $H$ is a morphism of $\Adj(\Tbb)$. Note that $H$ is \gls{full} and \gls{faith}, since it sends $A \stackrel{f}{\to} GFB$ to its traspose across $(F \adjoint G)$. If $H' : \mathcal{C}\kct \to \mathcal{D}$ is any morphism of $\Adj(\Tbb)$, we must have $H'A = FA = HA$ for all $A$, and since $GH' = G\kct$ and the \glspl{adjunc} have the same \gls{unit}, $H'$ must send the transpose $A \kto[f] B$ of $A \kto[f] GFB$ to its transpose across $(F \adjoint G)$. So $H' = H$. \end{proof} $\mathcal{C}\kct$ has \glspl{coprod} if $\mathcal{C}$ does, but has few other \glspl{lim} or \glspl{colim}. In contrast, we have: \begin{fcprop}[] \label{prop:5.8} % Proposition 5.8 Assuming: - $\Tbb$ a \gls{monad} on $\mathcal{C}$ Thens:[(i)] - The forgetful \gls{func} $G\EMaT : \mathcal{C}\EMaT \to \mathcal{C}$ \gls{creates} all \glspl{lim} which exist in $\mathcal{C}$. - If $\mathcal{C}$ has \glspl{colim} of shape $J$, then $G\EMaT$ \gls{creates} \glspl{colim} of shape $J$ if and only if $T$ preserves them. \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item Suppose given $D : J \to \mathcal{C}\EMaT$; write $D(j) = (GD(j), \delta_j)$, and let $(L, (\lambda_j : L \to GD(j) \mid j \in \ob J))$ be a \gls{lim} for $GD$. The composites $TL \stackrel{T\lambda_j}{\to} TGD(j) \stackrel{\delta_j}{\to} GD(j)$ form a \gls{cone} over $GB$. So they induce a unique $\lambda : TL \to L$. And $\lambda$ is a $\Tbb$-algebra structure on $L$, since the identities $\lambda \eta_L = \identity{L}$ and $\lambda(T\lambda) = \lambda\mu_L$ follow from uniqueness of factorisations through \glspl{lim} and it's the unique lifting of the \gls{lim} \gls{cone} in $\mathcal{C}$ to a \gls{cone} in $\mathcal{C}\EMaT$. The fact that it's a \gls{lim} \gls{cone} is straightforward. \item If $G\EMaT$ \gls{creates} \glspl{colim} then it \gls{preses} them, but so does $F\EMaT$ since it's a \gls{ladj}, so $T$ preserves them too. Conversely, given $D : J \to \mathcal{C}\EMaT$ and a \gls{colim} \gls{cone} $(GD(j) \stackrel{\lambda_j}{\to} L \mid j \in \ob J)$ under $GD$, we need to know that $(TGD(j) \stackrel{T\lambda_j}{\to} TL \mid j \in \ob J)$ is a \gls{colim} \gls{cone} to obtain $TL \stackrel{\lambda}{\to} L$ (and that $TTL$ is a \gls{colim} to verify that $\lambda$ is a $\Tbb$-algebra structure). Otherwise, the argument is as before. \qedhere \end{enumerate} \end{proof} Given $(\mathcal{C} \funcslr FG \mathcal{D})$, $(F \adjoint G)$, how can we tell when $K : \mathcal{D} \to \mathcal{C}\EMaT$ is part of an \gls{equivc}? Note: $H : \mathcal{C}\kct \to \mathcal{D}$ is an \gls{equivc} if and only if $F$ is \gls{esss}. \glsadjdefn{monadic}{monadic}{\gls{adjunc}}% We call $(F \adjoint F)$ (or the \gls{func} $G$) \emph{monadic} if $K : \mathcal{D} \to \mathcal{C}\EMaT$ is part of an \gls{equivc}. % \begin{fclemma}[] % \label{lemma:5.9} % % Lemma 5.9 % Assuming: % - $(\mathcal{C} \funcslr FG \mathcal{D})$ an % \gls{adjunc} inducing $\Tbb$ % - for every $\Tbb$-algebra $(A, \alpha)$, the % pair $FGFA \twofuncs{F\alpha}{\eps_{FA}} FA$ has % \gls{coequaler} in $\mathcal{D}$ % Then: % $K$ has a \gls{ladj} $L : C\emat \to % \mathcal{D}$. % \end{fclemma}