%! TEX root = CT.tex % vim: tw=50 % 11/11/2024 09AM Does every \gls{monad} come from an \gls{adjunc}? Answered by Eilenberg-Moore and by Kleisli (1965). Note that the \gls{monad} of \cref{eg:5.2}(a) is induced by $\Set \funcslr{M \times (\bullet)}U \funccat[M, \Set]$ and that of \cref{eg:5.2}(b) is induced by $\Set \funcslr PU \mathbf{CSLatt}$, where $\mathbf{CSLatt}$ is the \gls{cat} of \emph{complete semilattices} (posets, with arbitrary joins). The free complete semilattice on $A$ is $\mathcal{P}(A)$: every $f : A \to US$ extends uniquely to $\ol{f} : \mathcal{P}(A) \to S$ where $\ol{f}(A') = \bigvee \{f(a) \mid a \in A'\}$. An $M$-set (respectively a complete semilattice) is a set $A$ equipped with a suitable mapping $M \times A \to A$ (respectively $\mathcal{P}(A) \stackrel{\vee}{\to} A$). \glsnoundefn{emtid4}{(4)}{NA}% \glsnoundefn{emtid5}{(5)}{NA}% \glsnoundefn{emtid6}{(6)}{NA}% \begin{fcdefn}[Eilenberg-Moore algebra] \glsnoundefn{EMa}{Eilenberg-Moore algebra}{Eilenberg-Moore algebras}% \glsadjdefn{emoo}{Eilenberg-Moore}{NA}% \glssymboldefn{EMaT}% % Definition 5.3 Let $\Tbb = (T, \eta, \mu)$ be a \gls{monad} on $\mathcal{C}$. By an \emph{Eilenberg-Moore algebra} for $\Tbb$ we mean a pair $(A, \alpha)$ where $A \in \ob \mathcal{C}$ and $\alpha : TA \to A$ satisfies \begin{picmath} (4):~\begin{tikzcd} A \ar[r, "\eta_A"] \ar[rd, swap, "\identity{A}"] & TA \ar[d, "\alpha"] \\ & A \end{tikzcd} \qquad (5):~ \begin{tikzcd} TTA \ar[r, "T\alpha"] \ar[d, "\mu_A"] & TA \ar[d, "\alpha"] \\ TA \ar[r, "\alpha"] &A \end{tikzcd} \end{picmath} A \emph{homomorphism} $f : (A, \alpha) \to (B, \beta)$ is a morphism $f : A \to B$ satisfying \begin{picmath} (6):~\begin{tikzcd} TA \ar[r, "Tf"] \ar[d, "\alpha"] & TB \ar[d, "\beta"] \\ A \ar[r, "f"] & B \end{tikzcd} \end{picmath} We write $\mathcal{C}^{\mathbb{T}}$ for the \gls{cat} of $\Tbb$-algebras and homomorphisms. \end{fcdefn} \begin{fcprop}[] % Proposition 5.4 Assuming: - $\mathcal{C}$ a \gls{cat} - $\Tbb$ a \gls{monad} Then: the forgetful functor $\mathcal{C}\EMaT \stackrel{G\EMaT}{\to} \mathcal{C}$ has a \gls{ladj} $F\EMaT$, and the \gls{adjunc} induces the \gls{monad} $\Tbb$. \end{fcprop} \begin{proof} We define $F\EMaT A = (TA, \mu_A)$ (an algebra by \gls{mtid2} and \gls{mtid3}) and $F\EMaT(A \stackrel{f}{\to} B) = Tf$ (a homomorphism by \gls{naty} of $\mu$). Clearly, $F\EMaT$ is \gls{funcal} and $G\EMaT F\EMaT = T$. We establish the \gls{adjunc} using \cref{thm:3.7}: its \gls{unit} is $\eta$, and the \gls{counit} $\eps_{(A, \alpha)}$ is just $\alpha$ (a homomorphism $F\EMaT A \to (A, \alpha)$, by \gls{emtid5}, and natural by \gls{emtid6}). The triangular identity \begin{picmath} \begin{tikzcd} F\EMaT \ar[r] \ar[rd, "\identity{}", swap] & F\EMaT G\EMaT F\EMaT \ar[d] \\ & F\EMaT \end{tikzcd} \end{picmath} is just \gls{mtid1}, and \begin{picmath} \begin{tikzcd} G\EMaT \ar[r] \ar[rd, "\identity{}", swap] & G\EMaT F\EMaT G\EMaT \ar[d] \\ & G\EMaT \end{tikzcd} \end{picmath} is \gls{emtid4}. Finally, $G \eps_{F\EMaT A} = \mu$ by definition of $F\EMaT A$. So the \gls{adjunc} induces $(T, \eta, \mu)$. \end{proof} Note: $\mathcal{C} \funcslr FG \mathcal{D}$ induces $\Tbb$, we can replace $\mathcal{D}$ by its \gls{full} sub\gls{cat} on objects $FA$. So in trying to construct $\mathcal{D}$, we may assume $F$ is surjective (indeed, bijective) on objects. The morphisms $FA \to FB$ in $\mathcal{D}$ must correspond to morphisms $A \to GFB = TB$ in $\mathcal{C}$. \begin{fcdefn}[Kleisli category] \glsnoundefn{kcat}{Kleisli category}{Kleisli categories}% \glsadjdefn{kls}{Kleisli}{NA}% \glssymboldefn{KcT}% % Definition 5.5 Let $\Tbb$ be a \gls{monad} on $\mathcal{C}$. The \emph{Kleisli category} $\mathcal{C}_{\mathbb{T}}$ is defined by $\ob \mathcal{C}_{\mathbb{T}} = \ob \mathcal{C}$, morphsims $A \kto[f] B$ in $\mathcal{C}_{\mathbb{T}}$ are morphisms $A \stackrel{f}{\to} TB$ in $\mathcal{C}$. The identity $A \kto A$ is $A \stackrel{\eta_A}{\to} TA$, and the composite of $A \kto[f] B \kto[g] C$ is $A \stackrel{f}{\to} TB \stackrel{Tg}{\to} TTC \stackrel{\mu_C}{\to} TC$. For the \gls{unit} and associative laws, consider the \glspl{diag} \begin{picmath} \begin{tikzcd} A \ar[r, "f"] & TB \ar[r, "T\eta_B"] \ar[rd, swap, "\identity{TB}"] & TTB \ar[d, "\mu_B"] \\ & & TB \end{tikzcd} \end{picmath} \begin{picmath} \begin{tikzcd} A \ar[r, "\mu_A"] \ar[d, "f"] & TA \ar[d, "Tf"] \\ TB \ar[r, "\eta_{TB}"] \ar[rd, swap, "\identity{TB}"] & TTB \ar[d, "\mu_B"] \\ & TB \end{tikzcd} \end{picmath} \begin{picmath} \begin{tikzcd} A \ar[r, "f"] & TB \ar[r, "Tg"] & TTC \ar[r, "TTh"] \ar[d, "\mu_C"] & TTTD \ar[r, "T\mu_D"] \ar[d, "\mu_{TD}"] & TTD \ar[d, "\mu_D"] \\ & & TC \ar[r, "Th"] & TTD \ar[r, "\mu_D"] & TD \end{tikzcd} \end{picmath} \end{fcdefn} \begin{fcprop}[] \label{prop:5.6} % Proposition 5.6 Assuming: - $\mathcal{C}$ a \gls{cat} - $\Tbb$ a \gls{monad} Then: there is an \gls{adjunc} $\mathcal{C} \funcslr{F\kct}{G\kct} \mathcal{C}\kct$ inducing the \gls{monad} $\Tbb$. \end{fcprop} \begin{proof} We define $F\kct A = A$ and $F\kct(A \stackrel{f}{\to} B) = A \stackrel{f}{\to} B \stackrel{\eta_B}{\to} TB$. $F\kct$ preserves identities by definintion, and preserves composition by \begin{picmath} \begin{tikzcd} A \ar[r, "f"] \ar[rd, swap, "gf"] & B \ar[r, "\identity{B}"] \ar[d, "g"] & TB \ar[d, "Tg"] \\ & C \ar[r, "\eta_C"] & TC \ar[r, "T\identity{C}"] \ar[rd, swap, "\identity{TC}"] & TTC \ar[d, "\mu_C"] \\ & & & TC \end{tikzcd} \end{picmath} We define $G\kct A = TA$, and $G\kct(A \kto[f] B) = TA \stackrel{Tf}{\to} TTB \stackrel{\mu_B}{\to} TB$. $G\kct$ preserves identities by \gls{mtid1}, and preserves composites by \begin{picmath} \begin{tikzcd} TA \ar[r, "Tf"] & TTB \ar[r, "TTg"] \ar[d, "\mu_B"] & TTTC \ar[r, "T\mu_C"] \ar[d, "\mu_{TC}"] & TTC \ar[d, "\mu_C"] \\ & TB \ar[r, "Tg"] & TTC \ar[r, "\mu_C"] & TC \end{tikzcd} \end{picmath} We verify the \gls{adjunc} using \cref{thm:3.7}: $G\kct F\kct(f) = Tf$ by \gls{mtid1} so $G\kct F\kct = T$ and we take $\eta$ as \gls{unit} of the \gls{adjunc}. We define $TA \kto[\eps_A] A$ to be $TA \stackrel{\identity{TA}}{\to} TA$. To verify the \gls{natsq} \begin{picmath} \begin{tikzcd} TA \kar[r, "F\kct G\kct f"] \kar[d, "\eps_A"] & TB \kar[d, "\eps_B"] \\ A \kar[r, "f"] & B \end{tikzcd} \end{picmath} the lower composite is $TA \stackrel{Tf}{\to} TTB \stackrel{\mu_B}{\to} TB$ and the upper one is $TA \stackrel{Tf}{\to} TTB \stackrel{\mu_B}{\to} TB \stackrel{\eta_{TB}}{\to} TTB \stackrel{\mu_B}{\to} TB$, which agree since \gls{mtid2} tells us that $\mu_B \eta_{TB} = \identity{B}$. The triangular identities become \begin{picmath} \begin{tikzcd} F\kct A \kar[r, "F\kct \eta_A"] & FGFA \kar[r, "\eps_{FA}"] & FA \end{tikzcd} = \begin{tikzcd} TA \ar[r, "\eta_{TA}"] & TTA \ar[r, "\eta_{TTA}"] \ar[rr, bend right, "\identity{TTA}", swap] & TTTA \ar[r, "\eta_{TA}"] & TTA \end{tikzcd} \end{picmath} and \begin{picmath} \begin{tikzcd} GA \ar[r, "\eta_{GA}"] & GFGA \ar[r, "G\eps_A"] & GA \end{tikzcd} = \begin{tikzcd} TA \ar[r, "\eta_{TA}"] \ar[rr, bend right, "\identity{TA}", swap] & TTA \ar[r, "\eta_{TA}"] & TA \end{tikzcd} \end{picmath} Finally, $G\kct \eps_{F\kct A} = \mu_A$, so $(F\kct \adjoint G\kct)$ induces the \gls{monad} $\Tbb$. \end{proof}