%! TEX root = CT.tex % vim: tw=50 % 08/11/2024 09AM \begin{iffproof} \rightimpl is \cref{lemma:4.9}. \leftimpl Let $A \in \ob \mathcal{C}$. As in \cref{gaft}, $(A \darr G)$ inherits \gls{comp}ness and \gls{locsm}ness from $\mathcal{D}$: it also inherits \gls{wp}ness since \glspl{subobj} of $(B, f)$ in $(A \darr G)$ are those $B' \stackrel{m}{\monic} B$ in $\mathcal{D}$ such that $f$ factors through $GB' \stackrel{Gm}{\monic} GB$. (Note that the forgetful \gls{func} $(A \darr G) \to \mathcal{D}$ preserves \glspl{mono} by \cref{remark:4.8}). And if $\{S_i \mid i \in I\}$ is a co\gls{seping} set for $\mathcal{D}$, then $\{(S_i, f) \mid i \in I, f \in \mathcal{C}(A, GS_i)\}$ is a co\gls{seping} set for $(A \darr G)$. So we need to show: if $\mathcal{A}$ is \gls{comp}, \gls{locsm} and \gls{wp} and has a co\gls{seping} set $\{S_i \mid i \in I\}$, then $\mathcal{A}$ has an \gls{iobj}. First form $P = \prod_{i \in I} S_i$; now consider the \gls{lim} of the \gls{diag} \begin{picmath} \begin{tikzcd} P'' \ar[rd, tail] \ar[d, dashed, no head] & P' \ar[d, tail] \\ P^{(n)} \ar[r, tail] & P \end{tikzcd} \end{picmath} whose edges are a representative set of \glspl{subobj} of $P$. If $I$ is the apex of the \gls{lim} \gls{cone}, the legs $I \to P'$ of the \gls{lim} \gls{cone} are all \gls{monic} by the argument of \cref{lemma:4.15}, and in particular $I \to P$ is \gls{monic}, and it's a least \gls{subobj} of $P$. If we had $I \twofuncs fg A$, their \gls{equaler} $E \to I$ would be a \gls{subobj} of $P$ contained in $I \monic P$, so $E \to I$ is an isomorphism, and hence $f = g$. Given any $A \in \ob \mathcal{A}$ form the \gls{prod} $Q = \prod_{(i, f)} S_i$ over all pairs $(i, f)$ with $f_i A \to S_i$ and the morphism $g : A \to Q$ with $\pi_{(i, f)} g = f$ for all $(i, f)$. Since the $S_i$ are co\gls{seping}, $g$ is \gls{monic}. We also have $h : P \to Q$ defined by $\pi_{(i, f)} h = \pi_i$ for all $(i, f)$. Form the \gls{pullb} \begin{picmath} \begin{tikzcd} B \ar[r, "k"] \ar[d, "l"] & A \ar[d, tail, "g"] \\ P \ar[r, "h"] & Q \end{tikzcd} \end{picmath} then $l$ is \gls{monic} by \cref{lemma:4.15}, so $I \monic P$ factors as $I \to B \stackrel{l}{\monic} P$ and hence we have $I \to B \stackrel{k}{\to} A$. So $I$ is \gls{initial}. \qedhere \end{iffproof} \begin{example} % Example 4.17 Consider the inclusion $\KHaus \stackrel{I}{\to} \Top$. Tychonoff's Theorem says $\KHaus$ is closed under (\gls{small}) \glspl{prod} in $\Top$. It's closed under \glspl{equaler}, since \glspl{equaler} of pairs in $\KHaus$ are closed inclusions. So $\KHaus$ is \gls{comp}, and $I$ \gls{preses} \glspl{lim}. $\KHaus$ and $\Top$ are \gls{locsm}, and $\KHaus$ is \gls{wp} since \glspl{subobj} of $X$ is isomorphic to inclusions of closed subspaces. And $\KHaus$ has a co\gls{sep} $[0, 1]$, by Uryson's Lemma. So by \cref{saft}, $I$ has a \gls{ladj} $\beta$. \end{example} \begin{remark} % Remark 4.18 \phantom{} \begin{enumerate}[(a)] \item The construction in \cref{saft} is closely parallel to \v{C}ech's original construction of $\beta$. Given a space, \v{C}ech constructs $P = \prod_{f : x \to [0, 1]} [0, 1]$ and the map $g : X \to P$ defined by $\pi_f g = f$. Then he takes $\beta X$ to be the closure of the image of $g$, i.e. the smallest \gls{subobj} of $(P, g)$ in $(X \darr I)$. \item We could have constructed $\beta$ using \cref{gaft}: to get a \gls{sset} for $I$ at an object $X$ of $\Top$, note that any continuous $f : X \to IY$ factors as $X \to IY' \to IY$ where $Y'$ is the closure of the image of $f$, and then since $Y'$ has a dense subspace of cardinality $\le \card X$, we have $\card Y' \le 2^{2^{\card X}}$. \end{enumerate} \end{remark} \newpage \section{Monads} Suppose we have $C \funcslr FG \mathcal{D}$, $(F \adjoint G)$. How much of the \gls{adjunc} can we describe in terms of $\mathcal{C}$ (supposing we can't know anything about $\mathcal{D}$, or know very little about it)? We have: \begin{itemize} \item The \gls{func} $T = GF : \mathcal{C} \to \mathcal{C}$. \item The \gls{unit} $\eta : \identity{\mathcal{C}} \to T$. \item The natural transformation $\mu = G\eps_F : TT \to T$. \end{itemize} \glsnoundefn{mtid1}{(1)}{NA}% \glsnoundefn{mtid2}{(2)}{NA}% From the triangular identities of \cref{thm:3.7}, we obtain the commutative triangles: \begin{picmath} (1):~ \begin{tikzcd} T \ar[r, "T\eta"] \ar[rd, "\identity{T}", swap] & TT \ar[d, "\mu"] \\ & T \end{tikzcd} \qquad (2):~ \begin{tikzcd} T \ar[r, "\eta_T"] \ar[rd, "\identity{T}", swap] & TT \ar[d, "\mu"] \\ & T \end{tikzcd} \end{picmath} \glsnoundefn{mtid3}{(3)}{NA}% and from \gls{naty} of $\eps$ we obtain \begin{picmath} (3):~ \begin{tikzcd} TTT \ar[r, "T\mu"] \ar[d, "\mu_T"] & TT \ar[d, "\mu"] \\ TT \ar[r, "\mu"] & T \end{tikzcd} \end{picmath} \begin{fcdefn}[Monad] \glsnoundefn{monad}{monad}{monads}% % Definition 5.1 A \emph{monad} on a \gls{cat} $\mathcal{C}$ is a triple $(T, \eta, \mu) = \mathbb{T}$ where $T : \mathcal{C} \to \mathcal{C}$, and $\eta : \identity{\mathcal{C}} \to T$ and $\mu : TT \to T$ satisfy the commutative diagrams \begin{picmath} \begin{tikzcd} T \ar[r, "T\eta"] \ar[rd, "\identity{T}", swap] & TT \ar[d, "\mu"] \\ & T \end{tikzcd} \end{picmath} \begin{picmath} \begin{tikzcd} T \ar[r, "\eta_T"] \ar[rd, "\identity{T}", swap] & TT \ar[d, "\mu"] \\ & T \end{tikzcd} \end{picmath} \begin{picmath} \begin{tikzcd} TTT \ar[r, "T\mu"] \ar[d, "\mu_T"] & TT \ar[d, "\mu"] \\ TT \ar[r, "\mu"] & T \end{tikzcd} \end{picmath} \end{fcdefn} \begin{example} \label{eg:5.2} % Example 5.2 \phantom{} \begin{enumerate}[(a)] \item Let $M$ be a monoid. The \gls{func} $M \times (\bullet) : \Set \to \Set$ has a \gls{monad} structure: $\eta_A : A \to M \times A$ is $a \mapsto (1, a)$ and $\mu_A : M \times M \times A \to M \times A$ sends $(m, m', a)$ to $(mm', a)$. The three diagrams `are' the unit and associative laws in $M$. \item The \gls{func} $P : \Set \to \Set$ has a \gls{monad} structure: the \gls{unit} $\eta_A : A \to PA$ is the mapping $a \mapsto \{a\}$ (\cref{eg:1.7}(c)) and the multiplication $\mu_A : PPA \to PA$ sends a set of subsets of $A$ to their union. \end{enumerate} \end{example}