%! TEX root = CT.tex % vim: tw=50 % 06/11/2024 09AM Can we represent an \gls{iobj} as a \gls{lim}? \begin{fclemma}[] \label{lemma:4.11} % Lemma 4.11 Assuming: - $\mathcal{C}$ a \gls{cat} Then: specifying an \gls{iobj} of $\mathcal{C}$ is equivalent to specifying a \gls{lim} for $\identity{\mathcal{C}} : \mathcal{C} \to \mathcal{C}$. \end{fclemma} \begin{proof} First suppose $I$ is \glsref[iobj]{initial}. The unique morphisms $I \to A$, $A \in \ob \mathcal{C}$, form a \gls{cone} over $\identity{\mathcal{C}}$, and it's a \gls{lim} \gls{cone} since if $(A, (f_B : A \to B \mid B \in \ob \mathcal{C}))$ is any \gls{cone} over $\identity{\mathcal{C}}$, then $f_I$ is its unique factorisation through the one with apex $I$. \glsadjdefn{wiobj}{weakly}{initial}% Conversely, suppose given a \gls{lim} $(I, (f_A : I \to A \mid A \in \ob \mathcal{C}))$ for $\identity{\mathcal{C}}$. Then $I$ is weakly \glsref[iobj]{initial} (i.e. it admits morphisms to every object of $\mathcal{C}$); and if $g : I \to A$ then $g f_I = f_A$. In particular, $f_A f_I = f_A$ for all $A$, so $f_I$ is a factorisation of the \gls{lim} \gls{cone} through itself, so $f_I = \identity{I}$ and $I$ is \glsref[iobj]{initial}. \end{proof} The `primitive' Adjoint Functor Theorem follows from \cref{lemma:4.10}, \cref{lemma:4.11} and \cref{thm:3.3}. But it only applies to preorders (see Example Sheet). \begin{fcthm}[General Adjoint Functor Theorem] \label{gaft} \glsnoundefn{ssc}{solution-set condition}{solution-set conditions}\glsnoundefn{sset}{solution-set}{solution-sets}% % Theorem 4.12 Assuming: - $\mathcal{D}$ is \gls{comp} and \gls{locsm} Then: $G : \mathcal{D} \to \mathcal{C}$ has a \gls{ladj} if and only if $G$ preserves \gls{small} \glspl{lim} and satisfies the \emph{solution-set condition}: for every $A \in \ob \mathcal{C}$, there's a set $\{(B_i, f_i) \mid i \in I\}$ of objects of $(A \darr G)$ which is collectively \gls{wiobj} \glsref[iobj]{initial}. \end{fcthm} \begin{proof} \phantom{} \begin{enumerate}[$\Rightarrow$] \item[$\Rightarrow$] $G$ preserves \glspl{lim} by \cref{lemma:4.9}, and $\{(FA, \eta_A)\}$ is a singleton \gls{sset} for each $A$. \item[$\Leftarrow$] By \cref{lemma:4.10}, the \glspl{cat} $(A \darr G)$ are \gls{comp}, and they're \gls{locsm} since $\mathcal{D}$ is. So we need to show: if $\mathcal{A}$ is \gls{comp} and \gls{locsm}, and has a \gls{wiobj} \glsref[iobj]{initial} set $\{A_i \mid i \in I\}$, then it has an \gls{iobj}. First form $P = \prod_{i \in I} A_i$; then $P$ is \gls{wiobj} \glsref[iobj]{initial}. Now form the \gls{lim} of the \gls{diag} with \glspl{vert} $P$ and $P'$, with the morphisms $P \to P'$ being all endomorphisms of $P$. Writing $I \stackrel{i}{\to} P$ for this, $I$ is still \gls{wiobj} \glsref[iobj]{initial}. Suppose given $I \twofuncs fg B$; let $E \stackrel{e}{\to} I$ be their \gls{equaler}. There exists some $h : P \to E$. Now $ieh : P \to P$, but we also have $\identity{P} : P \to P$, so $i = \identity{P} i = iehi$. But $i$ is \gls{monic}, so we get $ehi = \identity{I}$, so $e$ is \gls{splitme} \gls{epic}, and hence $f = g$. \qedhere \end{enumerate} \end{proof} \begin{example} % Example 4.13 \phantom{} \begin{enumerate}[(a)] \item Consider the forgetful \gls{func} $U : \Gp \to \Set$. $\Gp$ has and $U$ \gls{preses} all \gls{small} \glspl{lim} by \cref{eg:4.7}(a), and $\Gp$ is \gls{locsm}. Given $A$, any $A \stackrel{f}{\to} UG$ factors through $A \to UG'$ where $G'$ is the subgroup generated by $\{f(a) \mid a \in A\}$. Also $\card G' \le \max \{\aleph_0, \card A\}$. Let $B$ be a set of this cardinality: considering all subsets $B' \subseteq B$, all group structures on $B'$ and all functions $A \to B'$, we get a \gls{sset} at $A$. \item Let $\mathbf{CLat}$ be the \gls{cat} of complete lattices (posets with all joins and all meets). $U : \mathbf{CLat} \to \Set$ creates \glspl{lim} just like $U : \Gp \to \Set$. In 1965, A. Hales showed that there exist arbitrarily large complete lattices generated by 3 element subsets, so the \gls{ssc} fails for $A = \{a, b, c\}$. Now also that $\mathbf{CLat}$ doesn't have a \gls{coprod} for 3 copies of $\{0, a, 1\}$. \end{enumerate} \end{example} \begin{fcdefn}[Subobject] \glsnoundefn{subobj}{subobject}{subobjects}% \glssymboldefn{Sub}% \glsadjdefn{wp}{well-powered}{\gls{cat}}% \glsadjdefn{wcp}{well-copowered}{\gls{cat}}% % Definition 4.14 By a subobject of $A \in \ob \mathcal{C}$, we mean a \gls{mono} $A' \monic A$. We order subobjects by $(A' \monic A) \le (A'' \monic A)$ if there exists \begin{picmath} \begin{tikzcd} A' \ar[rr] \ar[rd, tail] & & A'' \ar[ld, tail] \\ & A \end{tikzcd} \end{picmath} We write $\Subinternal_{\mathcal{C}}(A)$ for this preorder. We say $\mathcal{C}$ is well-powered if every $\Sub_{\mathcal{C}}(A)$ is equivalent to a \gls{small} poset. \end{fcdefn} For example, $\Set$ is \gls{wp} since the inclusions $A' \subseteq A$ form a representative set of \glspl{subobj} of $A$. It is \gls{wcp} since isomorphism classes of \glspl{epi} $A \epic B$ correspond to equivalence relations on $A$. \begin{fclemma}[] \label{lemma:4.15} % Lemma 4.15 Assuming: - a \gls{pullb} diagram \begin{picmath} \begin{tikzcd} P \ar[r, "h"] \ar[d, "k"] & A \ar[d, tail, "f"] \\ B \ar[r, "g"] & C \end{tikzcd} \end{picmath} where $f$ is \gls{monic} Then: $k$ is \gls{monic}. \end{fclemma} \begin{proof} Suppose given $D \twofuncs lm P$ with $kl = km$. Then $fhl = gkl = gkm = fhm$, but $f$ is \gls{monic} so $hl = hm$. So $l$ and $m$ are both factorisations of \begin{picmath} \begin{tikzcd} D \ar[r, "hl"] \ar[d, "kl"] & A \\ B \end{tikzcd} \end{picmath} through the \gls{pullb}, and hence $l = m$. \end{proof} \begin{fcthm}[Special Adjoint Functor Theorem] \label{saft} % Theorem 4.16 Assuming: - $\mathcal{C}$ and $\mathcal{D}$ are \gls{locsm} - $\mathcal{D}$ is \gls{comp} and \gls{wp} - $\mathcal{D}$ has a co\gls{seping} set of objects Then: \begin{iffc} \lhs $G : \mathcal{D} \to \mathcal{C}$ has a \gls{ladj} \rhs it \gls{preses} all \gls{small} \glspl{lim}. \end{iffc} \end{fcthm}