%! TEX root = CT.tex % vim: tw=50 % 04/11/2024 09AM \glsadjdefn{comp}{complete}{\gls{cat}}% \glsadjdefn{compness}{completeness}{\gls{cat}}% We say a \gls{cat} $\mathcal{C}$ is \emph{complete} if it has all \gls{small} \glspl{lim}. \begin{corollary}[] % Corollary 4.6 In each of the statements of \cref{prop:4.4}, we may replace `$\mathcal{C}$ has' by either `$\mathcal{D}$ has and $G : \mathcal{D} \to \mathcal{C}$ \gls{preses}' or `$\mathcal{C}$ has and $\mathcal{D} \to \mathcal{C}$ \gls{creates}'. \end{corollary} \begin{proof} Exercise. \end{proof} \begin{example} \label{eg:4.7} % Example 4.7 \phantom{} \begin{enumerate}[(a)] \item The \gls{func} $\Gp \to \Set$ \gls{creates} all \gls{small} \glspl{lim}: given a family of groups $\{G_i \mid i \in I\}$, there's a unique structure on $\prod_{i \in I} G_i$ making the projections into homomorphisms, and it's a \gls{prod} in $\Gp$. Similarly for \glspl{equaler}. But $\Gp \to \Set$ doesn't \gls{prese} or \gls{reflect} \glspl{coprod}. \item The forgetful \gls{func} $\Top \to \Set$ \gls{preses} \gls{small} \glspl{lim} and \glspl{colim}, but doesn't \gls{reflect} them. \item The inclusion $\AbGp \to \Gp$ \gls{reflects} \glspl{coprod}, but doesn't \gls{prese} them. A \gls{coprod} $A * B$ in $\Gp$ is nonabelian if both $A$ and $B$ are nontrivial. So the only \glspl{cone} in $\AbGp$ thot could map to \gls{coprod} \glspl{cone} in $\Gp$ are those where either $A$ or $B$ is trivial. But if $A = \{1\}$ then $A \times B \cong B$ in either \gls{cat}. \item If $\mathcal{D}$ is a \gls{reflsub} of $\mathcal{C}$, the inclusion $\mathcal{D} \to \mathcal{C}$ \gls{creates} any \glspl{lim} which exist. Given $D : J \to \mathcal{D}$ and a \gls{lim} \gls{cone} $(L, (x_j \mid j \in \ob J))$ for it in $\mathcal{C}$, the morphisms $FL \stackrel{F x_j}{\to} FD(j) \stackrel{\eta_{D(j)}^{-1}}{\to} D(j)$ (where $F$ is the \gls{ladj}, and $\eta$ is the \gls{unit}) form a \gls{cone} over $D$, so they induce a unique $u : FL \to L$. Now $u\eta_L : L \to L$ is $\identity{L}$ since it's a factorisation of the \gls{lim} through itself. So $\eta_L u \eta_L = \eta_L$, i.e. $\eta_L u$ is a factorisation of $\eta_L$ through itself, so $\eta_L u = \identity{FL}$. So the $\eta_{D(j)}^{-1}(F\lambda_j)$ form a \gls{lim} \gls{cone} in $\mathcal{C}$, and hence in $\mathcal{D}$. \item If $\mathcal{D}$ has \glspl{lim} of shape $J$, so does $\funccat[\mathcal{C}, \mathcal{D}]$ for any $\mathcal{C}$, and the forgetful \gls{func} $\funccat[\mathcal{C}, \mathcal{D}] \to \mathcal{D}^{\ob \mathcal{C}}$ \gls{creates} them (strictly). Given $D : J \to \funccat[\mathcal{C}, \mathcal{D}]$, we can regard it as a \gls{func} $J \times \mathcal{C} \to \mathcal{D}$. For each $A \in \ob \mathcal{C}$, $D(\bullet, A)$ is a \gls{diag} of shape $J$ in $\mathcal{D}$, so has a \gls{lim} $(LA, (\lambda_{j, A} : LA \to D(j, A) \mid j \in \ob J))$. Given $f : A \to B$ in $\mathcal{C}$, the composites $LA \stackrel{\lambda_{j, A}}{\to} D(j, A) \stackrel{D(j, f)}{\to} D(j, B)$ form a \gls{cone} over $D(\bullet, B)$, so induce a unique $Lf : LA \to LB$. \glsref[func]{Functoriality} of $L$ follows fro uniqueness, and this is the unique way of making $L$ into a \gls{func} which lifts the $\lambda_{j, \bullet}$ to a \gls{cone} in $\funccat[\mathcal{C}, \mathcal{D}]$. The fact that it's a \gls{lim} \gls{cone} is straightforward. \end{enumerate} \end{example} \begin{remark} \label{remark:4.8} % Remark 4.8 In any \gls{cat}, $A \stackrel{f}{\to} B$ is \gls{monic} if and only if \begin{picmath} \begin{tikzcd} A \ar[r, "\identity{A}"] \ar[d, "\identity{A}"] & A \ar[d, "f"] \\ A \ar[r, "f"] & B \end{tikzcd} \end{picmath} is a \gls{pullb}. Hence, if $\mathcal{D}$ has \glspl{pullb}, then any \gls{mono} in $\funccat[\mathcal{C}, \mathcal{D}]$ is \gls{pws} \gls{monic}, since its \gls{pullb} along itself is contsructed \gls{pws}. \end{remark} \begin{fclemma}[] \label{lemma:4.9} % Lemma 4.9 Assuming: - $G : \mathcal{D} \to \mathcal{C}$ has a \gls{ladj} Then: $G$ \gls{preses} all \glspl{lim} which exist in $\mathcal{D}$. \end{fclemma} \begin{proof}[Proof 1] Suppose $(F \adjoint G)$, and suppose $\mathcal{C}$ and $\mathcal{D}$ have \glspl{lim} of shape $J$. Then the diagram \begin{picmath} \begin{tikzcd} \mathcal{C} \ar[r, "F"] \ar[d, "\Diag"] & \mathcal{D} \ar[d, "\Diag"] \\ \funccat[J, "\mathcal{C}"] \ar[r, "{[J, F]}"] & \funccat[J, "\mathcal{D}"] \end{tikzcd} \end{picmath} commutes, and all the \glspl{func} in it have \glspl{radj}, so \begin{picmath} \begin{tikzcd} \funccat[J, "\mathcal{D}"] \ar[r, "{[J, G]}"] \ar[d, "\lim_J"] & \funccat[J, "\mathcal{C}"] \\ \mathcal{D} \ar[r, "G"] & \mathcal{C} \end{tikzcd} \end{picmath} commutes up to isomorphism by \cref{coro:3.6}. \end{proof} \begin{proof}[Proof 2] Suppose given $D : J \to \mathcal{D}$ and a \gls{lim} \gls{cone} $(L, (\lambda_j \mid j \in \ob J))$ over it. Give a \gls{cone} $(A, (\mu_j : A \to GD(j)))$ over $GD$, the transposes $\ol{\mu_j} : FA \to D(j)$ form a \gls{cone} over $D$ by \gls{naty} of the \gls{adjunc}, so induce a unique $\ol{\mu} : FA \to L$ such that $\lambda_j \ol{\mu} = \ol{\mu_j}$ for all $j$. Then $\mu : A \to GL$ is the unique morphism satisfying $(G \lambda_j) \mu = \mu_j$ for all $j$. \end{proof} \begin{fclemma}[] \label{lemma:4.10} % Lemma 4.10 Assuming: - $J$ a \gls{diag} shape - $\mathcal{D}$ has all \glspl{lim} of shape $J$ - $G : \mathcal{D} \to \mathcal{C}$ \gls{preses} all \glspl{lim} of shape $J$ Then: for each $A \in \ob \mathcal{C}$, $(A \darr G)$ has \glspl{lim} of shape $J$ and the forgetful \gls{func} $(A \darr G) \stackrel{U}{\to} \mathcal{D}$ creates them. \end{fclemma} \begin{proof} Suppose given $D : J \to (A \darr G)$; write $D(j) = (UD(j), f_j : A \to GUD(j))$ and let $(L, (\lambda_j \mid j \in \ob J))$ be a \gls{lim} for $UD$. Since the \glspl{edge} of $D$ are morphisms in $(A \darr G)$, the $f_j$ form a \gls{cone} over $GUD$, so there's a unique $f : A \to GL$ satisfying $(G\lambda_j)f = f_j$ for all $j$. So $(L, f)$ is the unique lifting of $L$ to an object of $(A \darr G)$ which makes the $\lambda_j$ into morphisms $(L, f) \to (UD(j), f_j)$ in $(A \darr G)$. The fact that these morphisms form a \gls{lim} \gls{cone} is straightforward. \end{proof}