%! TEX root = CT.tex % vim: tw=50 % 01/11/2024 09AM \begin{example} \label{eg:4.3} % Example 4.3 \phantom{} \begin{enumerate}[(a)] \item Suppose $J = \emptyset$. If $D : \emptyset \to \mathcal{C}$, then $\Cone(D) \cong \mathcal{C}$, so a \gls{lim} for $D$ is a \gls{tobj}. \item \glsnoundefn{span}{span}{spans}% If $J = \bullet \bullet$, a \gls{diag} of shape $J$ is a pair $A, B$, and a \gls{cone} over it is a \emph{span} \begin{picmath} \begin{tikzcd} & C \ar[ld] \ar[rd] \\ A & & B \end{tikzcd} \end{picmath} A \gls{lim} for it is a \gls{catprod} \begin{picmath} \begin{tikzcd} & A \times B \ar[ld, swap, "\pi_1"] \ar[rd, "\pi_2"] \\ A & & B \end{tikzcd} \end{picmath} Dually, a \gls{colim} for it is a \gls{coprod} \begin{picmath} \begin{tikzcd} A \ar[rd] & & B \ar[ld] \\ & A + B \end{tikzcd} \end{picmath} \item If $J$ is a (\gls{small}) discrete \gls{cat}, a (co)\gls{lim} for $(A_j \mid j \in J)$ is a (co)\gls{prod} $\prod_{j \in J} A_j$ ($\sum_{j \in J} A_j$). \item If $J$ is $\bullet \twofuncs{}{} \bullet$, then a \gls{diag} of shape $J$ is a parallel pair $A \twofuncs fg B$. A \gls{cone} over it consists of \begin{picmath} \begin{tikzcd} & C \ar[ld, swap, "h"] \ar[rd, "k"] \\ A & & B \end{tikzcd} \end{picmath} satisfying $fh = k = gh$, or equivalently of $C \stackrel{h}{\to} A$ satisfying $fh = gh$. So a \gls{lim} for $A \twofuncs fg B$ is an \gls{equaler} for $(f, g)$, as defined in \cref{eg:2.6}(g). \item \glsnoundefn{cospan}{cospan}{cospans}% \glsnoundefn{pullb}{pullback}{pullbacks}% \glsnoundefn{pushb}{pushout}{pushouts}% If $J$ is \begin{picmath} \begin{tikzcd} & \bullet \ar[d] \\ \bullet \ar[r] & \bullet \end{tikzcd} \end{picmath} then a \gls{diag} of shape $J$ is a \emph{cospan} \begin{picmath} \begin{tikzcd} & A \ar[d, "f"] \\ B \ar[r, "g", swap] & C \end{tikzcd} \end{picmath} A cone over it has $3$ legs, but if we omit the (redundant) middle one, it's a span \begin{picmath} \begin{tikzcd} D \ar[r, "h"] \ar[d, "k", swap] & A \\ B \end{tikzcd} \end{picmath} completing the cospan to a commutative square. A \gls{lim} for \begin{picmath} \begin{tikzcd} & A \ar[d, "f"] \\ B \ar["g", r, swap] & C \end{tikzcd} \end{picmath} is called a \emph{pullback} for $(f, g)$. If $\mathcal{C}$ has binary \glspl{prod} and \glspl{equaler}, we can construct pullbacks by forming the \gls{equaler} $A \times B \twofuncs{f\pi_1}{g\pi_2} C$. Dually, \glspl{colim} of shape $J^\op$ are called \emph{pushouts}. \item If $M = \{1, e\}$ is the $2$-element with $e^2 = e$, a \gls{diag} of shape $M$ is an object $A$ equipped with an idempotent $A \stackrel{e}{\to} A$. A \gls{lim} (respectively \gls{colim}) for $(A, e)$ is the \gls{monic} (respectively \gls{epic}) part of a splitting of $e$. Note that the \gls{func} $\Set \stackrel{F}{\to} \funccat[M, \Set]$ in \cref{eg:3.2}(e) is $\Diag$, so this explains the coincidence of left and \glspl{radj}. \item \glsnoundefn{dirseq}{direct sequence}{direct sequences}% \glsnoundefn{dirlim}{direct limit}{direct limits}% \glsnoundefn{invseq}{inverse sequence}{inverse sequences}% \glsnoundefn{invlim}{inverse limit}{inverse limits}% Suppose $J = \Nbb$ is the ordered set of natural numbers. A \gls{diag} of shape $\Nbb$ is a \emph{direct sequence} \[ A_0 \to A_1 \to A_2 \to A_3 \to \cdots ,\] and a \gls{colim} for it is called a \emph{direct limit} $A_\infty$. Dually, we have \emph{inverse sequences} \[ \cdots \to A_2 \to A_1 \to A_0 ,\] and their \glspl{lim} are called \emph{inverse limits}. For example in topology, an infinite dimensional CW-complex $X$ is the direct limit of its $n$-skeletons $X_n$. In algebra, the ring of $p$-adic integers is the \gls{lim} of the inverse sequence \[ \cdots \to \Zbb / p^3 \Zbb \to \Zbb / p^2 \Zbb \to \Zbb / p\Zbb \to \{0\} \] in $\Rng$. \end{enumerate} \end{example} \begin{fcprop}[] \label{prop:4.4} % Proposition 4.4 Assuming: - $\mathcal{C}$ a \gls{cat} Thens:[(i)] - If $\mathcal{C}$ has \glspl{equaler} and all \gls{small} \glspl{prod} (including empty \gls{prod}), then $\mathcal{C}$ has all \gls{small} \glspl{lim}. - If $\mathcal{C}$ has \glspl{equaler} and all finite \glspl{prod} (including empty \gls{prod}), then $\mathcal{C}$ has all finite \glspl{lim}. - If $\mathcal{C}$ has \glspl{pullb} and a \gls{tobj}, then $\mathcal{C}$ has all finite \glspl{lim}. \end{fcprop} \begin{proof} \phantom{} \begin{enumerate}[(i) \& ()] \item[(i) \& (ii)] Let $D : J \to \mathcal{C}$ be a \gls{diag}. Form the \glspl{prod} \begin{align*} P &= \prod_{j \in \ob J} D(j) \\ Q &= \prod_{\alpha \in \mor J} D(\cod \alpha) \end{align*} We have morphisms $P \twofuncs fg Q$ defined by $\pi_\alpha f = \pi_{\cod \alpha}$ and $\pi_\alpha g = D(\alpha) \pi_{\dom \alpha}$ for all $\alpha$. Let $e \stackrel{e}{\to} P$ be an \gls{equaler} for $(f, g)$. The morphisms $\lambda_j = \pi_j e : E \to P \to D(j)$ form a \gls{cone} over $D$, since for any $\alpha : j \to j'$ we have \[ D(\alpha)\lambda_j = D(\alpha) \pi_j e = \pi_\alpha ge = \pi_\alpha fe = \pi_{j'} e = \lambda{j'} .\] It is a \gls{lim}: given any \gls{cone} $(A, (\mu_j \mid j \in \ob J))$ over $D$, the $\mu_j$ form a \gls{cone} over the discrete \gls{diag} with vertices $D(j)$, so they induce a unique $\mu : A \to P$. Then $f \mu = g \mu$ since the $\mu_j$s form a \gls{cone} over $D$, so $\mu$ factors uniquely as $e\nu$, and $\nu$ is the unique factorisation of $(\mu_j \mid j \in \ob J)$ through $(\lambda_j \mid j \in \ob J)$. \item[(iii)] If $1$ is a \gls{tobj} of $\mathcal{C}$, then we can construct $A \times B$ as the \gls{pullb} of \begin{picmath} \begin{tikzcd} & A \ar[d] \\ B \ar[r] & 1 \end{tikzcd} \end{picmath} Then we can construct $\prod_{i = 1}^n A_i$ as $A_1 \times (A_2 \times ( \cdots \times A_n) \cdots ))$. To form an \gls{equaler} of $A \twofuncs fg B$, consider the \gls{pullb} of \begin{picmath} \begin{tikzcd} & A \ar[d, "(\identity{A}{,} f)"] \\ A \ar[r, swap, "(\identity{A}{,} g)"] & A \times B \end{tikzcd} \end{picmath} Any \gls{cone} \begin{picmath} \begin{tikzcd} C \ar[r, "h"] \ar[d, swap, "k"] & A \\ A \end{tikzcd} \end{picmath} over this has $h = k = \pi_1(\identity{A}, g)k = \pi_1(\identity{A}, f)h$. So a \gls{lim} \gls{cone} has the universal property of an \gls{equaler} for $(f, g)$. \qedhere \end{enumerate} \end{proof} \begin{fcdefn}[Limit preserving / reflecting / creating] \glsadjdefn{preses}{preserves}{\gls{func}}% \glsadjdefn{prese}{preserve}{\gls{func}}% \glsadjdefn{reflects}{reflects}{\gls{func}}% \glsadjdefn{reflect}{reflect}{\gls{func}}% \glsadjdefn{creates}{creates}{\gls{func}}% \label{defn:4.5} % Definition 4.5 Let $F : \mathcal{C} \to \mathcal{D}$ be a \gls{func}. \begin{cenum}[(a)] \item We say $F$ \emph{preserves} \glspl{lim} of shape $J$ if, given $D : J \to \mathcal{C}$ and a limit \gls{cone} $(L, (\lambda_j \mid j \in \ob J))$ for it, $(FL, (F\lambda_j \mid j \in \ob J))$ is a \gls{lim} for $FD : J \to \mathcal{D}$. \item We say $F$ \emph{reflects} \glspl{lim} of shape $J$ if given $D : J \to \mathcal{C}$, any \gls{cone} over $D$ which maps to a \gls{lim} \gls{cone} in $\mathcal{D}$ is a \gls{lim} in $\mathcal{C}$. \item We say $F$ \emph{creates} \glspl{lim} of shape $J$ if, given $D : J \to \mathcal{C}$ and a \gls{lim} \gls{cone} $(L, (\lambda_j \mid j \in \ob J))$ over $FD$, there exists a \gls{cone} over $D$ whose image under $F$ is $\cong (L, (\lambda_j))$, and any such \gls{cone} is a \gls{lim} in $\mathcal{C}$. \end{cenum} \end{fcdefn}