Definition 5.3 (Eilenberg-Moore algebra). Let 𝕋=(T,η,μ) be a monad on C. By an Eilenberg-Moore algebra for 𝕋 we mean a pair (A,α) where AobC and α:TAA satisfies

            A        TA             TTA      T A

(4) :      ηA1Aα         A(5) :        TμαααA TA       A
A homomorphism f:(A,α)(B,β) is a morphism f:AB satisfying
              TA       TB


(6) :      Tαβff A        B
We write C𝕋 for the category of 𝕋-algebras and homomorphisms.