Category Theory

Daniel Naylor

December 4, 2024

Contents

Lecture 1

1 Definitions and Examples

Definition 1.1 (Category)**.** A *category* C consists of:

- (a) a collection ob C of *objects* A, B, C, \ldots
- (b) a collection mor C of *morphisms* f, g, h, \ldots .
- (c) two operations dom, cod from mor C to ob C: we write $f : A \rightarrow B$ for "f is a morphism and dom $f = A$ and cod $f = B$ ".
- (d) an operation from ob C to mor C sending A to $1_A : A \to A$.
- (e) a partial binary operation $(f, g) \mapsto fg$ on mor C, such that fg is defined if and only if dom $f = \text{cod } g$, and in this case we have dom $fg = \text{dom } g$ and $\text{cod } fg = \text{cod } f$.

These are subject to the axioms:

- (f) $f1_A = f$ and $1_Ag = g$ when the composites are defined.
- (g) $f(gh) = (fg)h$ whenever fg and gh are defined.

Remark 1.2.

- (a) [ob](#page-1-1) C and [mor](#page-1-1) C needn't be sets. If they are, we call $\mathcal C$ a *small* category.
- (b) We could formalize the definition without mentioning objects, but we don't.
- (c) fg means "first g, then f ".

Example 1.3.

- (a) $Set = category of all sets and the functions between them. (Formally, a morphism of Set)$ $Set = category of all sets and the functions between them. (Formally, a morphism of Set)$ $Set = category of all sets and the functions between them. (Formally, a morphism of Set)$ is a pair (f, B) where f is a set-theoretic function, and B is its dodomain.)
- (b) We have [categories:](#page-1-1)
	- Group of groups and group homomorphisms
	- **Rng** of rings and homomorphisms
	- Vect_k of vector spaces over a field k
	- and so on
- (c) We have [categories](#page-1-1)
	- Top of topological spaces and continuous maps
	- Met of metric spaces and non-expansive maps (i.e. f such that $d(f(x), f(y)) \leq d(x, y)$)

• Mfd of smooth manifolds and C^{∞} maps

Also TopGp for topological groups and continuous homomorphisms, etc...

(d)We have a [category](#page-1-1) **Htpy** with the same objects as **[Top](#page-1-2)**, but morphisms $X \to Y$ are homotopy classes of continuous maps.

In general, given C and an equivalence relation \equiv on [mor](#page-1-1) C such that

 $f \equiv g \implies \text{dom } f = \text{dom } g$ $f \equiv g \implies \text{dom } f = \text{dom } g$ $f \equiv g \implies \text{dom } f = \text{dom } g$ and $\text{cod } f = \text{cod } g$ $\text{cod } f = \text{cod } g$ $\text{cod } f = \text{cod } g$

and

 $f \equiv g \implies fg \equiv gh$ and $kf \equiv kg$ when the composites are defined

we can form a *quotient* category $\mathcal{C}\mathcal{L}\equiv$.

(e) The [category](#page-1-1) Rel has the same objects as [Set](#page-1-2), but morphisms $A \rightarrow B$ are relations $R \subseteq$ $A \times B$, with composition defined by

 $R \circ S = \{(a, c) | (\exists b)(a, b) \in S \land (b, c) \in R\}.$

We can also define the [category](#page-1-1) Part of sets with partial functions.

(f) For any [category](#page-1-1) C , the *opposite category* C^{op} has the same objects and morphisms as C but [dom](#page-1-1) and [cod](#page-1-1) are interchanged and composition is reversed.

This yields a *duality principle*: if P is a true statement about [categories,](#page-1-1) so is P^* obtained by reversing arrows in P.

- (g) A (small) category with one object ∗ is a *monoid* (a semigroup with an identity). In particular, a group is a 1−object small [category](#page-1-1) whose morphisms are all isomorphisms.
- (h) A *groupoid* isa [category](#page-1-1) whose morphisms are all isomorphisms. For example, the *fundamental groupoid* $\pi_1(X)$ os a topological space X has points of X as objects, and morphisms $x \to y$ are homotopy classes of paths from x to y (c.f. the fundamental group $\pi_1(X, x)$).
- (i) A *discrete* category is one whose only morphisms are identities. If $\mathcal C$ is such that for any pair of objects (A, B) there is at most one [mor](#page-1-1)phism $A \to B$ then mor C becomes a reflexive, transitive relation on $ob \mathcal{C}$ $ob \mathcal{C}$. We call such a \mathcal{C} a *preorder*. In particular, a *poset* is a small preorder whose only isomorphisms are identities.
- (j) Given a field k, the [category](#page-1-1) \mathbf{Mat}_k has natural numbers as objects, and morphisms $n \to p$ are $p \times n$ matrices, with entries from k, and composition is matrix multiplication.

Lecture 2

Definition 1.4 (Functor)**.** Let C and D be [categories.](#page-1-1) A *functor* $F : C \rightarrow D$ consists of mappings $F : ob \mathcal{C} \to ob \mathcal{D}$ and $F + mor \mathcal{C} \to mor \mathcal{D}$ such that:

• $F(\text{dom } f) = \text{dom } Ff$

- • $F(\operatorname{cod} f) = \operatorname{cod} Ff$
- $F(1_A) = 1_{FA}$
- $F(fg) = (Ff)(Fg)$ whenever fg is defined.

We write **Cat** for the [category](#page-1-1) of [small](#page-1-3) [categories](#page-1-1) and the functors between them.

Example 1.5.

- (a) We have *forgetful* functors $G_p \rightarrow Set$ $G_p \rightarrow Set$, $Rng \rightarrow Set$ $Rng \rightarrow Set$, $Top \rightarrow Set$ $Top \rightarrow Set$, … or slightly more interestingly, $\text{Rng} \to \text{AbGp}$ $\text{Rng} \to \text{AbGp}$ $\text{Rng} \to \text{AbGp}$ $\text{Rng} \to \text{AbGp}$ $\text{Rng} \to \text{AbGp}$, $\text{Met} \to \text{Top}$ $\text{Met} \to \text{Top}$ $\text{Met} \to \text{Top}$ $\text{Met} \to \text{Top}$ $\text{Met} \to \text{Top}$, $\text{TopGp} \to \text{Top}$, $\text{TopGp} \to \text{Gp}$, ...
- (b)The construction of free groups is a [functor](#page-2-0) $\mathbf{Set} \to \mathbf{Gp}$ $\mathbf{Set} \to \mathbf{Gp}$ $\mathbf{Set} \to \mathbf{Gp}$ $\mathbf{Set} \to \mathbf{Gp}$ $\mathbf{Set} \to \mathbf{Gp}$: given a set A, FA is the group freely generated by A, such that every mapping $A \rightarrow G$ where G has a group structure extends uniquely to a homomorphism $FA \to G$. Given $A \stackrel{f}{\to} B$, we define $Ff : FA \to FB$ to be the unique homomorphism extending $A \stackrel{f}{\to} B \hookrightarrow FB$. Isf we also have $B \stackrel{g}{\to} C$, $F(gf)$ and $(Fg)(Ff)$ are both homomorphisms extending $A \stackrel{f}{\rightarrow} B \stackrel{g}{\rightarrow} C \hookrightarrow FC$.
- (c) Given a set A, we define PA to be the set of subsets of A. Given $f: A \rightarrow B$, we define $Pf : PA \rightarrow PB$ $Pf : PA \rightarrow PB$ $Pf : PA \rightarrow PB$ by $Pf(A') = f(a) | a \in A' \subseteq B$. So P is a [functor](#page-2-0) **[Set](#page-1-2)** \rightarrow **Set**.
- (d)But we also have a [functor](#page-2-0) $P^* : \mathbf{Set}^{\text{op}} \to \mathbf{Set}$ (or $\mathbf{Set} \to \mathbf{Set}^{\text{op}}$): $P^*A = PA$ and, for $A \stackrel{f}{\rightarrow} B$, $G^* f : PB \rightarrow PA$ is given by $P^* f(B') = ainA | f(a) \in B'$. We use the term "contravariant [functor](#page-2-0) $C \to \mathcal{D}$ " for a functor $C \to \mathcal{D}^{\text{op}}$ $C \to \mathcal{D}^{\text{op}}$ $C \to \mathcal{D}^{\text{op}}$.
- (e) Given a vector space V over k, we write V^* for the space of linear maps $V \to k$. Given $f: V \to W$ $f: V \to W$ $f: V \to W$, we write $f^*: W^* \to V^*$ for the mapping $\theta \mapsto \theta f$. This defines a [functor](#page-2-0) $\tilde{(\bullet)^*}: \mathbf{Vect}^{\mathrm{op}}_k \to \mathbf{Vect}_k.$ $\tilde{(\bullet)^*}: \mathbf{Vect}^{\mathrm{op}}_k \to \mathbf{Vect}_k.$ $\tilde{(\bullet)^*}: \mathbf{Vect}^{\mathrm{op}}_k \to \mathbf{Vect}_k.$ $\tilde{(\bullet)^*}: \mathbf{Vect}^{\mathrm{op}}_k \to \mathbf{Vect}_k.$ $\tilde{(\bullet)^*}: \mathbf{Vect}^{\mathrm{op}}_k \to \mathbf{Vect}_k.$
- (f)The mapping $C \mapsto C^{\text{op}}, F \mapsto F$ $C \mapsto C^{\text{op}}, F \mapsto F$ $C \mapsto C^{\text{op}}, F \mapsto F$ defines a [functor](#page-2-0) $\text{Cat} \to \text{Cat}$ $\text{Cat} \to \text{Cat}$ $\text{Cat} \to \text{Cat}$.
- (g) A [functor](#page-2-0) between monoids is a monoid homomorphism;a [functor](#page-2-0) between posets is a monotone map.
- (h)Given a group G, a [functor](#page-2-0) $G \to$ [Set](#page-1-2) is given by a set A equipped with a G-action $(g, a) \mapsto$ $g \cdot a$ $g \cdot a$ $g \cdot a$, i.e. a permutation representation of G. Similarly, a [functor](#page-2-0) $G \to \textbf{Vect}_k$ $G \to \textbf{Vect}_k$ $G \to \textbf{Vect}_k$ is a k-linear representation of G.
- (i)The fundamental group construction is a [functor](#page-2-0) $\Pi_1 : Top_* \to \mathbf{Gp}$ $\Pi_1 : Top_* \to \mathbf{Gp}$, where Top_* is the [category](#page-1-1) of topological spaces with basepoints, and morphisms being the continuous maps which preserve the basepoints.

Definition 1.6 (Natural transformation). Given [categories](#page-1-1) C and D, and two [functors](#page-2-0) $C \frac{F}{G} \mathcal{D}$, a *natural transformation* $\alpha : F \to G$ assigns to each $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$ a morphism $\alpha_A : FA \to \tilde{G}A$ in \mathcal{D} , such that for any $A \stackrel{f}{\rightarrow} B$ in \mathcal{C} , the square

$$
\begin{array}{ccc}\nFA & \xrightarrow{Ff} & FB \\
\downarrow \alpha_A & \downarrow \alpha_B \\
GA & \xrightarrow{Gf} & GB\n\end{array}
$$

commutes (we call this square the *naturality square* for α at f). Given α as above, and β : $G \to H$, we define $\beta \alpha : F \to H$ by $(\beta \alpha)_A = \beta_A \alpha_A$. We write $[\mathcal{C}, \mathcal{D}]$ for the [category](#page-1-1) of functors $\mathcal{C} \to \mathcal{D}$ and natural transformations between them.

Example 1.7.

- (a) Given a vector space V, we have a linear map $\alpha_V : V \to V^{**}$ sending $v \in V$ to the linear form $\theta \mapsto \theta(v)$ on V^{**} . These maps define a natural transformation $1_{\text{Vect}_k} \to (\bullet)^{**}$ $1_{\text{Vect}_k} \to (\bullet)^{**}$ $1_{\text{Vect}_k} \to (\bullet)^{**}$.
- (b) There is a natural transformation α : 1_{[Set](#page-1-2)} \rightarrow UF, where F is the free group functor and U is the forgetful functor $Gp \rightarrow Set$ $Gp \rightarrow Set$ $Gp \rightarrow Set$, whose value at A is the inclusion $A \hookrightarrow UFA$. The naturality square

$$
A \xrightarrow{f} B
$$

\n
$$
\downarrow^{\alpha_A} \qquad \qquad \downarrow^{\alpha_B}
$$

\n
$$
UFA \xrightarrow{UFf} UFB
$$

commutes by the definition of Ff .

- (c) For any A, we have a mapping $\eta_A : A \to PA$ given by $A\eta_A(a) = \{a\}$. This is a natural transformation $1_{\text{Set}} \to P$ $1_{\text{Set}} \to P$ $1_{\text{Set}} \to P$ since $Pf({a}) = {f(a)}$ for any $a \in A$.
- (d) Given order-preserving maps $P \stackrel{f}{\longrightarrow} Q$ between posets, there exists a unique natural transformation $f \to g$ if and only if $f(p) \le g(p)$ for all $P \in P$.
- (e) Given two group homomorphisms $G \xrightarrow{u} H$, a natural transformation $u \to v$ is given by $h \in H$ such that $hu(g) = v(g)h$ for all $g \in G$, or equivalently $u(g) = h^{-1}v(g)h$, i.e. u and v are conjugate homomorphisms. In particular, the group of natural transformations $u \to u$ is the *centraliser* of the image of u.
- (f) If A and B are G-sets considered as functors $G \to \mathbf{Set}$ $G \to \mathbf{Set}$ $G \to \mathbf{Set}$, a natural transformation $f : A \to B$ Lecture 3 is a G-invariant map, i.e. $f : A \to B$ such that $q f(a) = f(qa)$ for all $a \in A, q \in G$.
	- (g) The *Hurewicz homomorphism* links the homotopy and homology groups of a space X. Elements of $\pi_n(X, x)$ are homotopy classes of basepoint-preserving maps $S^n \stackrel{f}{\to} X$. If we think of S^n as $\partial \Delta^{n+1}$, f defines a singular n-cycle on X and homotopic maps differ by an *n*-boundary, so we get a well-defined map $\pi_n(X, x) \stackrel{h_n}{\rightarrow} H_n(X)$. h_n is a homomorphism, and it'sa [natural transformation](#page-3-0) $\pi_n \to H_nU$, where U is the forgetful functor $\text{Top}_* \to \text{Top}$ $\text{Top}_* \to \text{Top}$ $\text{Top}_* \to \text{Top}$.

We have isomorphisms of [categories:](#page-1-1) e.g. $F : \textbf{Rel} \to \textbf{Rel}^{\text{op}}$ defined by $FA = A$, $FR = R^{\text{o}} = \{(b, a) \mid$

 $(a, b) \in R$ is its own inverse.

But we have a weaker notion of equivalence of [categories.](#page-1-1)

Lemma 1.8. Assuming that:

• $\alpha: F \to G$ is a [natural transformation](#page-3-0) between [functors](#page-2-0) $\mathcal{C} \Longrightarrow \mathcal{D}$

Then α is an isomorphism in $[\mathcal{C}, \mathcal{D}]$ $[\mathcal{C}, \mathcal{D}]$ $[\mathcal{C}, \mathcal{D}]$ if and only if α_A is an isomorphism in $\mathcal D$ for each A.

Proof.

- \Rightarrow Obvious since composition in [C, [D](#page-3-0)].
- \Leftarrow Suppose each α_A has an inverse β_A . Given $A \stackrel{f}{\rightarrow} B$ in C, in the diagram

$$
G A \xrightarrow{G f} G B
$$

\n
$$
\alpha_A \left(\bigcup_{\beta_A}^{\beta_A} \beta_B \bigcup_{\beta_B}^{\beta_B} \right)^{\alpha_B}
$$

\n
$$
F A \xrightarrow{F f} F B
$$

we have $\beta_B(Gf) = \beta_B(Gf)\alpha_A\beta_A = \beta_B\alpha_B(Ff)\beta_A = (Ff)\beta_A$.

Definition 1.9 (Equivalence of categories)**.** Let C and D be [categories.](#page-1-1) An *equivalence* between C and D consists of [functors](#page-2-0) $F : C \to D$ and $G : D \to C$ together with [natural isomorphisms](#page-5-0) $\alpha: 1_{\mathcal{C}} \to GF$, $\beta: FG \to 1_{\mathcal{D}}$. We write $\mathcal{C} \equiv \mathcal{D}$ if there exists an [equivalence](#page-5-1) between \mathcal{C} and \mathcal{D} . We say P is a *categorical property* if

$$
(\mathcal{C} \text{ has } P \text{ and } \mathcal{C} \equiv \mathcal{D}) \implies \mathcal{D} \text{ has } P.
$$

Example 1.10.

(a) The [category](#page-1-1) [Part](#page-1-2) of sets and partial functions is [equivalent](#page-5-1) to [Set](#page-1-2)[∗] (the [category](#page-1-1) of pointed sets). We define $F : \mathbf{Set}_{*} \to \mathbf{Part}$ by $F(A, a) = A \setminus \{a\}$ and if $f : (A, a) \to (B, b)$, with $(Ff)(x) = f(x)$ if $f(x) \neq b$ and undefined otherwise. Then define $G : Part \rightarrow Set_*$ $G : Part \rightarrow Set_*$ by $G(A) = (A \cup \{A\}, A)$ and if $f : A \rightarrow B$, then

$$
Gf(x) = \begin{cases} f(x) & \text{if } x \in A \text{ and } f(x) \text{ is defined} \\ B & \text{otherwise} \end{cases}
$$

.

Then $FG = 1_{Part}$ $FG = 1_{Part}$ $FG = 1_{Part}$; $GF \neq 1_{Set_*}$ $GF \neq 1_{Set_*}$ $GF \neq 1_{Set_*}$, but there is an isomorphism $1_{Set_*} \rightarrow GF$. Note that $Part \not\cong Set_*$ $Part \not\cong Set_*$ $Part \not\cong Set_*$ $Part \not\cong Set_*$.

(b) We have an [equivalence](#page-5-1) $\mathbf{fdVect}_k \equiv \mathbf{fdVect}_k^{\mathrm{op}}$ $\mathbf{fdVect}_k \equiv \mathbf{fdVect}_k^{\mathrm{op}}$ $\mathbf{fdVect}_k \equiv \mathbf{fdVect}_k^{\mathrm{op}}$: both [functors](#page-2-0) are $(\bullet)^*$, and both isomor-

 \Box

phisms are $\alpha:1_{\mathbf{fdVect}_k}\to(\bullet)^{**}.$

(c) We have an [equivalence](#page-5-1) $\mathbf{fdVect}_k \equiv \mathbf{Mat}_k$ $\mathbf{fdVect}_k \equiv \mathbf{Mat}_k$ $\mathbf{fdVect}_k \equiv \mathbf{Mat}_k$: we define $F : \mathbf{Mat}_k \to \mathbf{fdVect}_k$ by $F(n) = k^n$, $F(n \stackrel{A}{\to} p)$ is the linear map $k^n \to k^p$ represented by A (with respect to standard bases). TO define G, choose a basis for each V, and define $G(V) = \dim V$,

 $G(V \stackrel{f}{\rightarrow} W) =$ matrix representing f with respect to chosen bases.

 $GF = 1_{\text{Mat}_k}$ $GF = 1_{\text{Mat}_k}$ $GF = 1_{\text{Mat}_k}$; the choice of bases yields isomorphisms $k^{\dim V} \to V$ for each V, which form a [natural transformation](#page-3-0) $FG \to 1_{\text{fdVect}_k}$.

Definition1.11 (Faithful / full / essentially surjective). Let $F: \mathcal{C} \to \mathcal{D}$ be a [functor.](#page-2-0)

- (a) We say F is *faithful* if, given f and g in [mor](#page-1-1) C, $(Ff = Fg, dom f = dom g, cod f =$ $(Ff = Fg, dom f = dom g, cod f =$ $(Ff = Fg, dom f = dom g, cod f =$ $(Ff = Fg, dom f = dom g, cod f =$ $(Ff = Fg, dom f = dom g, cod f =$ $(Ff = Fg, dom f = dom g, cod f =$ $(Ff = Fg, dom f = dom g, cod f =$ $\operatorname{cod} g$ $\operatorname{cod} g$ $\operatorname{cod} g$ $\implies f = g$.
- (b) We say F is full if, for every $g : FA \to FB$ in D, there exists $f : A \to B$ in C with $Ff = g$.
- (c) We say F is *essentially surjective* if, for any $B \in ob \mathcal{D}$ $B \in ob \mathcal{D}$ $B \in ob \mathcal{D}$, there exists $A \in ob \mathcal{C}$ with $FA \cong B$.

Note that if F is full and faithfull, it's essentially injective: given $FA \stackrel{g}{\cong} FB$ in \mathcal{D} , the unique

 $A \stackrel{f}{\rightarrow} B$ with $Ff = g$ is an isomorphism. We say $\mathcal{D} \subseteq \mathcal{C}$ is a *full subcategory* if the inclusion $\mathcal{D} \to \mathcal{C}$ is a full [functor.](#page-2-0)

Lemma 1.12. Assuming that:

• $F: \mathcal{C} \to \mathcal{D}$

Then F is part of an [equivalence](#page-5-1) $\mathcal{C} \equiv \mathcal{D}$ if and only if F is [full, faithful, essentially surjective.](#page-6-0)

Proof.

- \Rightarrow Suppose give G, α and β as in [Definition 1.9.](#page-5-2) Then $\beta_B : FGB \rightarrow B$ witnesses the fact that F is [essentially surjective.](#page-6-0) If $A \stackrel{f}{\Longrightarrow} B$ satisfy $Fg = Fg$, then $GFf = GFg$; but $f = \alpha_B^{-1}(GFf)\alpha_A$, so $f = g$. Suppose given $FA \stackrel{g}{\rightarrow} FB$; then $f = \alpha_B^{-1}(Gg)\alpha_A$ satisfies $GFf = Gf$ but G is [faithful](#page-6-0) for the same reason as F , so $F f = g$.
- \Leftarrow For each $B \in ob\mathcal{D}$ $B \in ob\mathcal{D}$ $B \in ob\mathcal{D}$, chose $GB \in ob\mathcal{C}$ and an isomorphism $\beta_B : FGB \to B$. Given $B \stackrel{g}{\to} C$, define $Gg: GB \to GC$ to be the unique morphism such that $FGg = \beta_C^{-1}g\beta_B$. Functoriality follows from uniqueness, and [naturality](#page-3-0) of β . We define $\alpha_A : A \to GFA$ to be the unique morphism such that $F\alpha_A = \beta_{FA}^{-1} : FA \to FGFA$. α_A is an isomorphism, and [naturality squares](#page-3-0) for α are mapped by F to [naturality squares](#page-3-0) for β^{-1} , so they commute.

Lecture 4

Definition1.13 (Skeleton). By a *skeleton* of a [category](#page-1-1) C , we mean a [full](#page-6-0) subcategory containing just one object from each isomorphism class. We say C is *skeletal* if it's a skeleton of itself.

Example. [Mat](#page-1-2)_kis a [skeletal](#page-7-0) [category;](#page-1-1) it's isomorphic to the [skeleton](#page-7-0) of \mathbf{fdVect}_k consisting of the spaces k^n .

However, working with [skeletal](#page-7-0) [categories](#page-1-1) involves heavy use of the axiom of choice.

Definition1.14 (Monomorphism / epimorphism). Let $f : A \rightarrow B$ be a morphism in a [category](#page-1-1) C. We say f is a *monomorphism* (or *monic*) if, given $C \stackrel{g}{\longrightarrow} A$, $fg = fh \implies g = h$. We say f is an *epimorphism* (or *epic*) if it's a monomorphism in \mathcal{C}^{op} \mathcal{C}^{op} \mathcal{C}^{op} .

We write $A \stackrel{f}{\rightarrow} B$ to indicate that f is monic, and $A \stackrel{f}{\rightarrow} B$ to indicate that it's epic. We say C is *balanced* if every arrow which is monic and epic is an isomorphism.

We will calla [monic](#page-7-1) morphism e *split* if it has a left inverse (and similarly we may define the notion of split [epic\)](#page-7-1).

Example 1.15.

- (a) In [Set](#page-1-2), [monic](#page-7-1) \iff injective (\Leftarrow obvious; for \Rightarrow consider morphisms $\{\ast\} \to A$). Also, [epic](#page-7-1) \iff surjective (\Leftarrow obvious; for \Rightarrow consider morphisms $B \to \{0, 1\}$).
- (b) In [Gp](#page-1-2), [monic](#page-7-1) \iff injective (for \Rightarrow consider homomorphisms $\mathbb{Z} \to G$), and [epic](#page-7-1) \iff surjective (but \Rightarrow is quite non-trivial – it uses free products with amalgamation).
- (c) In **[Rng](#page-1-2)**, [monic](#page-7-1) \iff injective, but [epic](#page-7-1) does not imply surjective (for example, consider $\mathbb{Z} \hookrightarrow \mathbb{Q}$.
- (d) In [Top](#page-1-2), [monic](#page-7-1) \iff injective and [epic](#page-7-1) \iff surjective (as in [Set](#page-1-2)) but Top isn't balanced.
- (e) In preorder, all morphisms are [monic](#page-7-1) and [epic,](#page-7-1) so a preorderis [balanced](#page-7-1) if and only if it's an equivalence relation.

2 The Yoneda Lemma

Definition2.1 (Locally small). We say a [category](#page-1-1) C is *locally small* if, for any two objects A and B, the morphisms $A \to B$ in C are parametrized by a set $\mathcal{C}(A, B)$.

IfA is an object of a [locally small](#page-8-1) [category](#page-1-1) C, we have a [functor](#page-2-0) $C(A, \bullet) : C \to \mathbf{Set}$ $C(A, \bullet) : C \to \mathbf{Set}$ $C(A, \bullet) : C \to \mathbf{Set}$ sending B to $\mathcal{C}(A, B)$ $\mathcal{C}(A, B)$ $\mathcal{C}(A, B)$ and a morphism $B \stackrel{g}{\to} C$ to the mapping $(f \mapsto gf) : \mathcal{C}(A, B) \to \mathcal{C}(A, C)$ $(f \mapsto gf) : \mathcal{C}(A, B) \to \mathcal{C}(A, C)$ $(f \mapsto gf) : \mathcal{C}(A, B) \to \mathcal{C}(A, C)$ (this is [funcorial](#page-2-0) since composition in $\mathcal C$ is associative).

Dually, we have $\mathcal{C}(\bullet, B) : \mathcal{C}^{op} \to \mathbf{Set}.$ $\mathcal{C}(\bullet, B) : \mathcal{C}^{op} \to \mathbf{Set}.$

Lemma 2.2 (Yoneda)**.** Assuming that:

- • $\mathcal C$ is a [locally small](#page-8-1) [category](#page-1-1)
- + $A \in \text{ob }\mathcal{C}$ $A \in \text{ob }\mathcal{C}$ $A \in \text{ob }\mathcal{C}$
- $F: \mathcal{C} \to \mathbf{Set}$ $F: \mathcal{C} \to \mathbf{Set}$ $F: \mathcal{C} \to \mathbf{Set}$ a [functor](#page-2-0)

Then

- (i) There is a bijection between [natural transformations](#page-3-0) $\mathcal{C}(A, \bullet) \to F$ $\mathcal{C}(A, \bullet) \to F$ $\mathcal{C}(A, \bullet) \to F$ and elements of FA.
- (ii)Moreover, this bijection is [natural](#page-3-0) in A and F .

Proof.

(i) Given α : $\mathcal{C}(A, \bullet) \to F$ $\mathcal{C}(A, \bullet) \to F$ $\mathcal{C}(A, \bullet) \to F$, we define $\Phi(\alpha) = \alpha_A(1_A) \in FA$. Given $x \in FA$, we define $\Psi(x): C(A, \bullet) \to F$ $\Psi(x): C(A, \bullet) \to F$ $\Psi(x): C(A, \bullet) \to F$ by $\Psi(x)_B(f : A \to B) = Ff(x) \in FB$. This is naturalin B since F is a [functor:](#page-2-0) given $g : B \to C$ we have

$$
(Fg)\Psi(x)_B(f) = (Fg)(Ff)(x) = F(gf)(x) = \Psi(x)_C(gf).
$$

For any $x, \Phi \Psi(x) = \Psi(x)_A(1_A) = F1_A(x) = x$. For any α , $\Psi\Phi(\alpha)_{B}(f) = Ff(\alpha_{A}(1_{A})) = \alpha_{B}(\mathcal{C}(A, f)(1_{A}) = \alpha_{B}(f)$ $\Psi\Phi(\alpha)_{B}(f) = Ff(\alpha_{A}(1_{A})) = \alpha_{B}(\mathcal{C}(A, f)(1_{A}) = \alpha_{B}(f)$ $\Psi\Phi(\alpha)_{B}(f) = Ff(\alpha_{A}(1_{A})) = \alpha_{B}(\mathcal{C}(A, f)(1_{A}) = \alpha_{B}(f)$ for all $f : A \rightarrow B$. So $\Psi\Phi(\alpha) = \alpha.$

 \Box

(ii) Later. Seeing examples of usage of (i) is interesting first.

Corollary2.3. For a [locally small](#page-8-1) [category](#page-1-1) C, the assignment $A \mapsto C(A, \bullet)$ is a [full](#page-6-0) and [faithful](#page-6-0) [functor](#page-2-0) $\mathcal{C}^{\mathrm{op}} \to [\mathcal{C}, \mathbf{Set}].$ $\mathcal{C}^{\mathrm{op}} \to [\mathcal{C}, \mathbf{Set}].$ $\mathcal{C}^{\mathrm{op}} \to [\mathcal{C}, \mathbf{Set}].$ $\mathcal{C}^{\mathrm{op}} \to [\mathcal{C}, \mathbf{Set}].$ $\mathcal{C}^{\mathrm{op}} \to [\mathcal{C}, \mathbf{Set}].$

Proof. Substitute $C(B, \bullet)$ $C(B, \bullet)$ $C(B, \bullet)$ for F in [Lemma 2.2\(](#page-8-3)i): we have a bijection from $C(B, A)$ $C(B, A)$ $C(B, A)$ to the collection of [natural transformations](#page-3-0) $C(A, \bullet) \to C(B, \bullet)$ $C(A, \bullet) \to C(B, \bullet)$ $C(A, \bullet) \to C(B, \bullet)$.

For a given f, the [natural transformation](#page-3-0) $\mathcal{C}(f, \bullet)$ sends $g : B \to C$ to gf , so this is [functorial](#page-2-0) by associativity of composition $\mathcal{C}.$

Similarly,we have a [full](#page-6-0) and [faithful](#page-6-0) [functor](#page-2-0) $C \to [C^{\rm op}, \mathbf{Set}]$ sending A to $C(\bullet, A)$ $C(\bullet, A)$ $C(\bullet, A)$. We call this the *Yonedaembedding*: it allows us to regard any [locally small](#page-8-1) [category](#page-1-1) C as a [full](#page-6-0) subcategory of a [Set](#page-1-2)-valued [functor](#page-2-0) [category.](#page-1-1) \Box

Compare with Cayley's Theorem in group theory (every group is isomorphic to a subgroup of a permutation group) and 'Dedekind's Theorem' (every poset is isomorphic to a sub-poset of a power set).

Definition2.4 (Representable). We say a [functor](#page-2-0) $F : C \to \mathbf{Set}$ $F : C \to \mathbf{Set}$ $F : C \to \mathbf{Set}$ is *representable* if it's isomorphic to a $\mathcal{C}(A, \bullet)$ $\mathcal{C}(A, \bullet)$ $\mathcal{C}(A, \bullet)$ for some A. By a *representation* of F, we mean a pair (A, x) where $x \in FA$ is such that $\Phi(x)$ is an isomorphism. We call x a *universal element* of F.

Corollary 2.5. Suppose (A, x) and (B, y) are both [representations](#page-9-0) of F. Then there is a unique isomorphism $A \stackrel{f}{\rightarrow} B$ such that $(Ff)(x) = y$.

Proof. $(Ff)(x) = g$ is equivalent to saying that

commutes, so f must be the unique isomorphism, whose image under [Yoneda](#page-8-3) is $\Phi(x)^{-1}\Phi(y)$. \Box

Lecture 5

Proof of [Lemma 2.2\(](#page-8-3)ii). Suppose for the moment that C is [small,](#page-1-3) so that $[C, Set]$ $[C, Set]$ $[C, Set]$ is [locally small.](#page-8-1) Given two [functors](#page-2-0) $C \times [C, Set] \rightarrow Set:$ $C \times [C, Set] \rightarrow Set:$ $C \times [C, Set] \rightarrow Set:$ the first sends an object (A, F) to FA, and a morphism $(A \stackrel{f}{\rightarrow} A', F \stackrel{\alpha}{\rightarrow} F')$ to the diagonal of

$$
\begin{array}{ccc}\nFA & \xrightarrow{Ff} & FA' \\
\downarrow \alpha_A & \downarrow \alpha'_A \\
F'A & \xrightarrow{F'f} & F'A'\n\end{array}
$$

The second is the composite

$$
\mathcal{C}\times[\mathcal{C},\mathbf{Set}] \stackrel{Y\times 1}{\longrightarrow} [\mathcal{C},\mathbf{Set}]^{\mathrm{op}}\times[\mathcal{C},\mathbf{Set}]^{\mathrm{op}} \stackrel{[\mathcal{C},\mathbf{Set}](\bullet,\bullet)}{\longrightarrow} \mathbf{Set}
$$

whereY is a [Yoneda embedding.](#page-9-1) Then Φ and Ψ define a [natural isomorphism](#page-5-0) between these two.

In elementary terms, this says that if $x \in FA$, and $x' \in F'A'$ is its image under the diagonal, then $\Psi(x')$ is the composite

$$
\mathcal{C}(A',\bullet) \stackrel{\mathcal{C}(f,\bullet)}{\longrightarrow} \mathcal{C}(A,\bullet) \stackrel{\Psi(x)}{\longrightarrow} F \stackrel{\alpha}{\longrightarrow} F'.
$$

This makes sense without the assumption that $\mathcal C$ is [small,](#page-1-3) and it's true since the composite maps

$$
1_A \mapsto f \mapsto (Ff)(x) \mapsto \alpha_{A'}(Ff)(x).
$$

Example 2.6.

- (a) The forgetful [functor](#page-2-0) $\mathbf{Gp} \to \mathbf{Set}$ is [represented](#page-9-0) by $(\mathbb{Z}, 1)$, $\mathbf{Rng} \to \mathbf{Set}$ $\mathbf{Rng} \to \mathbf{Set}$ $\mathbf{Rng} \to \mathbf{Set}$ is represented by $(\mathbb{Z}[X], X)$, [Top](#page-1-2) \rightarrow [Set](#page-1-2) is [represented](#page-9-0) by $({*}, *)$.
- (b) The [functor](#page-2-0) $\mathcal{P}^* : \mathbf{Set}^{\text{op}} \to \mathbf{Set}$ is [represented](#page-9-0) by $(\{0,1\},\{1\})$. This is the bijection between subsets of A and functions $A \stackrel{f}{\rightarrow} \{0,1\}$, and it's natural. But \mathcal{P} : [Set](#page-1-2) \rightarrow Set is not [representable,](#page-9-0) since $P({*})$ isn't a singleton.
- (c) The [functor](#page-2-0) $\Omega: \textbf{Top}^{\text{op}} \to \textbf{Set}$ sending X to the set of open subsets of X, and $X \stackrel{f}{\to} Y$ to $f^{-1} : \Omega(Y) \to \Omega(X)$ is [representable](#page-9-0) by the *Sierpinski space* $\Sigma = \{0,1\}$ with $\{1\}$ open but $\{0\}$ not open. This works since continuous maps $X \to \Omega$ are the characteristic functions of open subsets of X.
- (d) The [functor](#page-2-0) $(\bullet)^* : \textbf{Vect}_k \to \textbf{Vect}_k$ $(\bullet)^* : \textbf{Vect}_k \to \textbf{Vect}_k$ $(\bullet)^* : \textbf{Vect}_k \to \textbf{Vect}_k$ isn't [representable,](#page-9-0) but its composite with $\textbf{Vect}_k \to \textbf{Set}$ $\textbf{Vect}_k \to \textbf{Set}$ $\textbf{Vect}_k \to \textbf{Set}$ is [represented](#page-9-0) by k.
- (e) For a group G considered as a 1-object [category,](#page-1-1) the unique [representable](#page-9-0) [functor](#page-2-0) $G \rightarrow$ [Set](#page-1-2) is the *Cayley representation*: G acting on itself by multiplication.
- (f)Given two objects A, B in a [locally small](#page-8-1) [category](#page-1-1) C, we have a [functor](#page-2-0) $C^{op} \to \mathbf{Set}$ sending Cto $\mathcal{C}(C, A) \times \mathcal{C}(C, B)$. If this [functor](#page-2-0) is [representable,](#page-9-0) we call the representing object a *categorical product* $A \times B$ and write $(\pi_1 : A \times B \to A, \pi_2 : A \times B \to B)$ for the universal element. Its defining property is that given any pair $(f: C \to A, g: C \to B)$, there is a unique isomorphism $h: C \to A \times B$ such that $\pi_q h = f$ and $\pi_2 h = g$.

Dually, we have the notion of *coproduct* $A + B$ with coprojections $\gamma_1 : A \to A + B$, $\gamma_2 :$ $B \to A + B$.

(g)Given a parallel pair $A \stackrel{f}{\longrightarrow} B$ in a [locally small](#page-8-1) [category](#page-1-1) C, we have a [functor](#page-2-0) $F: C^{op} \to \mathbf{Set}$ $F: C^{op} \to \mathbf{Set}$ $F: C^{op} \to \mathbf{Set}$ $F: C^{op} \to \mathbf{Set}$ $F: C^{op} \to \mathbf{Set}$ sending C to $\{h : C \to A \mid fh = gh\}$ and defined on morphisms in the same way as $\mathcal{C}(\bullet, A)$.

A [representation](#page-9-0) of this [functor](#page-2-0) is called an *equaliser* of (f, g) : it consists of $E \stackrel{e}{\rightarrow} A$ satisfying $fe = ge$, and such that any h with $fh = gh$ factors uniquely as ek. Note that e is [monic;](#page-7-1) we calla [monomorphism](#page-7-1) *regular* if it occurs as an equaliser.

Dually, we have the notions of *coequaliser* and *regular epi*.

In [Set](#page-1-2), [products](#page-10-0) are just cartesian products (also in [Gp](#page-1-2), [Rng](#page-1-2), [Top](#page-1-2), …). [coproducts](#page-10-0) in [Set](#page-1-2) are disjoint unions A II $B = (A \times \{0\}) \cup (B \times \{1\})$. In [Gp](#page-1-2), [coproducts](#page-10-0) are free products $G * H$.

In [Set](#page-1-2), the [equaliser](#page-10-1) of $A \stackrel{f}{\longrightarrow} B$ is the inclusion of $\{a \in A \mid f(a) = g(a)\}\$ and the [coequaliser](#page-10-1) of (f, g) is the quotient of B by the smallest equivalence relation containing $\{(\hat{f}(a), g(a)) | a + A\}.$

Note that in [Set](#page-1-2), all [monomorphisms](#page-7-1) and all [epimorphisms](#page-7-1) are [regular,](#page-10-1) but in [Top](#page-1-2),a [monomorphism](#page-7-1) $X \stackrel{f}{\rightarrow} Y$ is [regular](#page-10-1) if and only if X is topologised as a subspace of Y. An [epimorphism](#page-7-1) $X \stackrel{f}{\rightarrow} Y$ is [regular](#page-10-1) if and only if Y is topologised as a quotient of X .

Note that if f is both [regular](#page-10-1) [monic](#page-7-1) and regular [epic,](#page-7-1) then it's an isomorphism since the pair (g, h) of which its [equaliser](#page-10-1) must satisfy $g = h$.

Warning. The following terminology is not standard. These are usually (both!) referred to as "generating", but to avoid confusion, in this course we will refer to them with separete names.

Definition2.7 (Separating / generating family). Let $\mathcal G$ be a family of objects of a [locally small](#page-8-1) [category](#page-1-1) C.

- (a) We say G is a *separating family* if the [functors](#page-2-0) $C(G, \bullet)$, $G \in \mathcal{G}$ are jointly [faithful,](#page-6-0) i.e. given a parallel pair $A \stackrel{f}{\longrightarrow} B$, the equations $fh = gh$ for all $h : G \to A$ with $G \in \mathcal{G}$ imply $f = g$.
- (b) We say G is a *detecting family* if the $\mathcal{G}(G, \bullet)$ jointly reflect isomorphisms, i.e. given $A \stackrel{f}{\rightarrow} B$, if every $G \stackrel{g}{\to} B$ with $G \in \mathcal{G}$ factors uniquely through f, then f is an isomorphism.
- If $\mathcal{G} = \{G\}$, we call G a *separator* or a *detector*.

Lecture 6

Lemma 2.8.

- (i) If $\mathcal C$ has [equalisers](#page-10-1) (i.e. every pair of parallel arrows has an [equaliser\)](#page-10-1), then any [detecting](#page-11-0) family in $\mathcal C$ is [separating.](#page-11-0)
- (ii) If $\mathcal C$ is [balanced,](#page-7-1) then any [separating](#page-11-0) family in $\mathcal C$ is [detecting.](#page-11-0)

Proof.

- (i)Suppose G is a [detecting](#page-11-0) family, and suppose $A \frac{f}{\sqrt{g}} B$ satisfy the hypothesis of [Definition 2.7\(](#page-11-1)a). Let $E \stackrel{e}{\to} A$ of (f, g) : then any $G \stackrel{h}{\to} A$ with $G \in \mathcal{G}$ factors uniquely through e, so e is an isomorphism, so $f = q$.
- (ii) Suppose G is [separating,](#page-11-0) and $A \stackrel{f}{\to} B$ satisfies the hypothesis of [Definition 2.7\(](#page-11-1)b). If $C \stackrel{g}{\longrightarrow} A$ satisfy $fg = fh$, then any $G \stackrel{k}{\to} C$ with $G \in \mathcal{G}$ satisfies $gk = hk$, since both are factorisations of fgk through f. So $g = h$; hence f is [monic.](#page-7-1)

Similarly, if $B \stackrel{\iota}{\longrightarrow} D$ satisfy $lf = mf$, then any $G \stackrel{n}{\to} B$ satisfies $ln = mn$, since it factors through f, so $l = m$ and hence f is epic. Since C is [balanced,](#page-7-1) f is an isomorphism. \Box

Example 2.9.

- (a) In [Set](#page-1-2), $1 = \{*\}$ is a [separator](#page-11-0) and a [detector,](#page-11-0) since Set $(1, \bullet)$ is isomorphic to the identity [functor.](#page-2-0)Also, $2 = \{0, 1\}$ is a c[oseparator](#page-11-0) and a c[odetector,](#page-11-0) since it represents $P^* : Set^{op} \rightarrow$ $P^* : Set^{op} \rightarrow$ $P^* : Set^{op} \rightarrow$ $P^* : Set^{op} \rightarrow$ $P^* : Set^{op} \rightarrow$ [Set](#page-1-2).
- (b) In [Gp](#page-1-2) (respectively [Rng](#page-1-2)), \mathbb{Z} (respectively $\mathbb{Z}[X]$) is a separator and a detector, since it represents the forgetful [functor.](#page-2-0)

But [Gp](#page-1-2)has no c[oseparator](#page-11-0) or c[odetector](#page-11-0) set: given any set $\mathcal G$ of groups, there is a simple group H with card $H > \text{card } G$ for all $G \in \mathcal{G}$, so the only homomorphisms $H \to G$ with $G \in \mathcal{G}$ are trivial.

- (c) For any [small](#page-1-3) [category](#page-1-1) C, the set $\{\mathcal{C}(A, \bullet) \mid A \in ob\mathcal{C}\}\$ $\{\mathcal{C}(A, \bullet) \mid A \in ob\mathcal{C}\}\$ $\{\mathcal{C}(A, \bullet) \mid A \in ob\mathcal{C}\}\$ is [separating](#page-11-0) and [detecting](#page-11-0) in $[\mathcal{C}, Set]$ $[\mathcal{C}, Set]$ $[\mathcal{C}, Set]$. This uses [Yoneda](#page-8-3) and [Lemma 1.8](#page-5-3) (for the detecting case).
- (d) In [Top](#page-1-2),1 is a [separator](#page-11-0) since it represents $U : Top \rightarrow Set$ $U : Top \rightarrow Set$. But Top has no [detecting](#page-11-0) set of objects: given a set G of spaces, choose $\kappa > \text{card } X$ for all $X \in \mathcal{G}$, and let Y and Z be a set of card κ . Give Y the discrete topology and for Z, we set the closed sets be Z plus all the subsets of card κ . The identity $Y \to Z$ is continuous, but not a homeomorphism, but its restriction to any subset of card $\lt \kappa$ is a homeomorphism, so G can't detect the fact that f isn't an isomorphism.
- (e) Let $\mathcal G$ be the [category](#page-1-1) whose objects are the ordinals, with identities plus two morphisms $\alpha \stackrel{f}{\Longrightarrow} \beta$ whenever $\alpha < \beta$ with composition defined by $ff = fg = gf = gg = f$.

Then0 is a [detector](#page-11-0) for C: it can tell that $0 \frac{f}{\sigma^2}$ aren't isomorphisms since neither factors through the other, and if $0 < \alpha < \beta$ it can tell that $\alpha \frac{f}{\beta} \beta$ aren't isomorphisms since $0 \stackrel{g}{\rightarrow} \beta$ doesn't factor through either.

But C has no separating set: if G is any set of ordinals, choose $\alpha > \beta$ for all $\beta \in \mathcal{G}$ and then \mathcal{G} can't separate $\alpha \stackrel{f}{\Longrightarrow} \alpha + 1$.

By definition, the [functors](#page-2-0) $C(A, \bullet): C \to \mathbf{Set}$ $C(A, \bullet): C \to \mathbf{Set}$ $C(A, \bullet): C \to \mathbf{Set}$ preserve [monomorphisms,](#page-7-1) but they don't always preserve [epimorphisms.](#page-7-1)

Definition 2.10 (Projective)**.** We say an object P ina [locally small](#page-8-1) [category](#page-1-1) Cis *projective* if $\mathcal{C}(P, \bullet)$ preserves [epimorphisms,](#page-7-1) i.e. if given

$$
P
$$

\n
$$
\downarrow f,
$$

\n
$$
Q \xrightarrow{g} R
$$

there exists $h: P \to Q$ with $gh = f$. Dually, P is *injective* if it's projective in \mathcal{C}^{op} \mathcal{C}^{op} \mathcal{C}^{op} . If P satisfies this condition for all q in some class $\mathcal E$ of [epimorphisms,](#page-7-1) we call it $\mathcal E$ -projective.

In [C, [Set](#page-3-0)], we consider the class of *pointwise epimorphisms*, i.e. those α such that α_A is surjective for

all A.

Corollary 2.11. [functors](#page-2-0) of the form $C(A, \bullet)$ are [pointwise](#page-12-0) [projective](#page-12-1) in $[C, Set]$ $[C, Set]$ $[C, Set]$.

Proof. Immediate from [Yoneda;](#page-8-3) given

$$
C(A, \bullet)
$$

\n
$$
\downarrow \alpha
$$

\n
$$
Q \xrightarrow{\beta} R
$$

with β [pointwise](#page-12-0) [epic,](#page-7-1) $\Phi(\alpha) \in RA$ is $\beta_A(y)$ for some $y \in QA$, so $\beta\Psi(y) = \alpha$.

 \Box

" $[\mathcal{C}, \mathbf{Set}]$ $[\mathcal{C}, \mathbf{Set}]$ $[\mathcal{C}, \mathbf{Set}]$ has enough [pointwise](#page-12-0) projectives":

Proposition 2.12. Assuming that:

- $\mathcal C$ is [small](#page-1-3)

• $F: \mathcal{C} \to \mathbf{Set}$ $F: \mathcal{C} \to \mathbf{Set}$ $F: \mathcal{C} \to \mathbf{Set}$

Thenthere exists a [pointwise](#page-12-0) [epimorphism](#page-7-1) $P \rightarrow F$ where P is pointwise [projective.](#page-12-1)

Proof. Set $P = \coprod_{(A,x)} C(A, \bullet)$ where the disjoint union is over all pairs (A, x) with $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$ and $x \in FA$. A morphism $P \to Q$ is uniquely determined by a family of morphisms $C(A, \bullet) \to Q$. Hence P is [pointwise](#page-12-0) [projective,](#page-12-1) since all the $C(A, \bullet)$ are. But we have $\alpha : P \to F$ whose (A, x) -th component is $\Psi(x): \mathcal{C}(A, \bullet) \to F$ and this is [pointwise](#page-12-0) [epic](#page-7-1) since any $x \in FA$ appears as $\Psi(x)(1_A)$. \Box

Lecture 7

3 Adjunctions

Definition 3.1 (Adjnction, D. Kan 1958)**.** Let C and D be [categories.](#page-1-1) An *adjunction* between C and D consists of [functors](#page-2-0) $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ together with, for each $A \in \text{ob } \mathcal{C}$ $A \in \text{ob } \mathcal{C}$ $A \in \text{ob } \mathcal{C}$ and $B \in ob\mathcal{D}$ $B \in ob\mathcal{D}$ $B \in ob\mathcal{D}$, a bijection between morphisms $FA \to B$ in \mathcal{D} and morphisms $A \to GB$ in \mathcal{C} , which is natural in A and B. (If C and D are [locally small,](#page-8-1) this means that $\mathcal{D}(F\bullet,\bullet)$ and $\mathcal{C}(\bullet,G\bullet)$ are [naturally isomorphic](#page-5-4) [functors](#page-2-0) $\mathcal{C}^{\text{op}} \times \mathcal{D} \to \textbf{Set}$ $\mathcal{C}^{\text{op}} \times \mathcal{D} \to \textbf{Set}$.)

We say F is *left adjoint* to G, or G is *right adjoint* to F, and we write $(F \dashv G)$.

Example 3.2.

- (a) The free [functor](#page-2-0) $F : \mathbf{Set} \to \mathbf{Gp}$ is [left adjoint](#page-14-1) to the forgetful functor $\mathbf{Gp} \stackrel{U}{\to} \mathbf{Set}$. By definition, homomorphisms $FA \to G$ correspond to functions $A \to UG$; [naturality](#page-3-0) in A was built into the definition of F in [Example 1.5\(](#page-3-1)b) and [naturality](#page-3-0) in G is immediate.
- (b) The forgetful [functor](#page-2-0) $U : \textbf{Top} \to \textbf{Set}$ has a [left adjoint](#page-14-1) D, which equips a set A with its discrete topology since any function $A \to UX$ is continuous as a map $DA \to X$. U also has a [right adjoint](#page-14-1) I given by the 'indiscrete' topology.
- (c) The [functor](#page-2-0) [ob](#page-1-1): $Cat \rightarrow Set$ $Cat \rightarrow Set$ $Cat \rightarrow Set$ has a [left adjoint](#page-14-1) D given by discrete [categories,](#page-1-1) and a [right](#page-14-1) [adjoint](#page-14-1) I: IA is the [category](#page-1-1) with objects A and morphisms $a \to b$ for each (a, b) . D also hasa [left adjoint](#page-14-1) π_0 : π_0 C is the set of *connected components* of C, i.e. the quotient of [ob](#page-1-1) C by the smallest equivalence relation which identifies [dom](#page-1-1) f with [cod](#page-1-1) f for all $f \in \text{mor } C$ $f \in \text{mor } C$ $f \in \text{mor } C$.
- (d)Given a set A, we can regard (\bullet) \times A as a [functor](#page-2-0) [Set](#page-1-2) \rightarrow Set. It has a [right adjoint,](#page-14-1) namely $\textbf{Set}(A, \bullet)$ $\textbf{Set}(A, \bullet)$ $\textbf{Set}(A, \bullet)$. Given $f : B \times A \to C$ we can regard it as a function $\lambda f : B \to \textbf{Set}(A, C)$ by $\lambda f(b)(a) = f(b,a).$

Wecall a [category](#page-1-1) $\mathcal C$ *cartesian closed* if it has binary [products](#page-10-0) as defined in [Example 2.6\(](#page-10-2)f) andeach (\bullet) \times A has a [right adjoint](#page-14-1) (\bullet)^A. For example, [Cat](#page-2-0) is cartesian clsosed, with $\mathcal{D}^{\mathcal{C}}$ taken to be the $[\mathcal{C}, \mathcal{D}].$ $[\mathcal{C}, \mathcal{D}].$ $[\mathcal{C}, \mathcal{D}].$

(e)Let $M = \{1, e\}$ be the 2-element monoid with $e^2 = e$ (and identity 1). We have a [functor](#page-2-0) $F : \mathbf{Set} \to [M, \mathbf{Set}]$ sending A to $(A, 1_A)$ and a [functor](#page-2-0) $G : [M, \mathbf{Set}] \to \mathbf{Set}$ sending (A, e) to $\{a \in A \mid ea = a\}.$

We h[a](#page-14-1)ve $(F \dashv G + F)$: $(F \dashv G)$ since any $f : M \to (B, e)$ takes values in $G(B, e)$ and any $g:(B,e)\to FA$ is determined by its restriction to $G(B,e)$ since $g(b)=g(e,b)$. However, note that this is not an [equivalence](#page-5-1) of [categories.](#page-1-1)

(f) Let 1 be the [category](#page-1-1) with one object and one morphism (which must the identity on the only object). A [left adjoint](#page-14-1) for the unique [functor](#page-2-0) $C \rightarrow 1$ picks out an *initial object* of C, i.e. an [ob](#page-1-1)jectsuch that there is a unique $I \to A$ for each $A \in ob\mathcal{C}$. Dually, a [right adjoint](#page-14-1) for $C \to \mathbf{1}$ 'is' a *terminal object* of C (a terminal object is an initial object in C^{op} C^{op} C^{op}).

Again, the example of [Gp](#page-1-2) shows that these two can coincide.

- (g) Suppose given $A \stackrel{f}{\rightarrow} B$ in **[Set](#page-1-2)**. We have order-preserving mappings $Pf : PA \rightarrow PB$ and $P^*f : PB \to PA$, [a](#page-14-1)nd $(Pf \dashv P^*f$ since $A' \subseteq f^{-1}B' \iff f(A') \subseteq B'$.
- (h) Suppose given a relation $R \subseteq A \times B$. We define $(\bullet)^r : PA \to PB$ and $(\bullet)^l : PB \to PA$ by

$$
(S)^{r} = \{b \in B \mid (\forall a \in S)((a, b) \in R)\}
$$

$$
(T)^{l} = \{a \in A \mid (\forall b \in T)((a, b) \in R)\}\
$$

These are [contravariant](#page-3-2) [functors](#page-2-0) and $S \subseteq T^l \iff S \times T \subseteq R \iff T \subseteq S^r$. We say $(\bullet)^r$ and $(\bullet)^l$ are *adjoint on the right.*

- (i) P^* : [Set](#page-1-2)^{[op](#page-2-1)} \rightarrow Set is self[-adjoint on the right,](#page-15-0) since functions $A \rightarrow PB$ and functions $B \to PA$ both correspond to relations $R \subseteq A \times B$.
- (j) $(\bullet)^* : \textbf{Vect}_k^* \to \textbf{Vect}_k$ $(\bullet)^* : \textbf{Vect}_k^* \to \textbf{Vect}_k$ $(\bullet)^* : \textbf{Vect}_k^* \to \textbf{Vect}_k$ is self[-adjoint on the right,](#page-15-0) since linear maps $V \to W^*$ and $W \to V^*$ both correspond to bilinear maps $V \times W \to k$.

Theorem 3.3. Assuming that:

- • $G: \mathcal{D} \to \mathcal{C}$ is a [functor](#page-2-0)
- for $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$, let $(A \downarrow G)$ be the [category](#page-1-1) whose objects are pairs (B, f) where $B \in ob\mathcal{D}$ and $f: A \to GB$, and whose morphisms $(B, f) \to (B', f')$ are morphisms $g: B \to B'$ making

commute.

Thenspecifying a [left adjoint](#page-14-1) for F is equivalent to specifying an [initial object](#page-14-2) of $(A \downarrow G)$ for each A.

Lecture 8

Proof. First suppose $(F \dashv G)$ $(F \dashv G)$ $(F \dashv G)$. For each $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$, let $\eta_A : A \to GFA$ be the morphism corresponding to $1_{FA}:FA\to FA$. Then (FA,η_A) is an [initial object](#page-14-2) of $(A\downarrow G)$: given any $f:A\to GB$, the diagram

$$
A \xrightarrow{ \eta_A \to } GFA
$$

\n
$$
f \searrow \bigcup_{GB} G
$$

commutes if and only if g corresponds to f under the [adjunction,](#page-14-1) by [naturality](#page-3-0) of the [adjunction](#page-14-1) bijection.

So there's a unique morphism $(FA, \eta_A) \to (B, f)$ in $(A \downarrow G)$.

Conversely, suppose given in [initial object](#page-14-2) (FA, η_A) in $(A \downarrow G)$ for each A. We make F into a function $\mathcal{C} \to \mathcal{D}$: given $A \stackrel{f}{\to} B$, Ff is the unique morphism $(FA, \eta_A) \to (FB, \eta_B f)$ in $(A \downarrow G)$. [Functoriality](#page-2-0) comes from uniqueness: given $B \stackrel{g}{\rightarrow} C$, $(Fg)(Ff)$ and $F(gf)$ are both morphisms $(FA, \eta_A) \rightarrow (FC, \eta_C gf)$ in $(A \downarrow G)$. The [adjunction](#page-14-1) bijection sends $A \stackrel{f}{\rightarrow} GB$ to the unique morphism $(FA, \eta_A) \to (B, f)$ in $(A \downarrow G)$, with inverse sending $FA \stackrel{g}{\to} B$ to $(Gg)\eta_A : A \to GB$. This is naturalin A since η is a [natural transformation](#page-3-0) $1_c \rightarrow GF$ and natural in B since G is [functorial.](#page-2-0) \Box

Corollary 3.4. Suppose F and F' are both [left adjoint](#page-14-1) to $G : \mathcal{D} \to \mathcal{C}$. Then there is a canonical natural isomorphism $\alpha : F \to F'$.

Proof. (FA, η_A) and $(F'A, \eta'_A)$ are both [initial](#page-14-2) in $(A \downarrow G)$, so there's a unique isomorphism α_A between them. α is natural: given $A \stackrel{f}{\to} B$, $(F'f)\alpha_A$ and $\alpha_B(Ff)$ are both morphisms $(FA, \eta_A) \to (F'B, \eta'_B f)$ in $(A \downarrow G)$, so they're equal.

As a result of this, we will often talk about "the" [left adjoint](#page-14-1) ofa [functor](#page-2-0) (when it exists), because we don't usually care about which one in the isomorphism class we use.

Lemma 3.5. Assuming that:

- $C \xrightarrow[\epsilon]{F} \mathcal{D} \xleftarrow[\epsilon]{H}$ $\frac{n}{\kappa}$ E
- $(F \dashv G)$ $(F \dashv G)$ $(F \dashv G)$ and $(H \dashv K)$
- Then $(HF \dashv GK)$ $(HF \dashv GK)$ $(HF \dashv GK)$.

Proof. Given $A \in ob\mathcal{C}, C \in ob\mathcal{E}$ $A \in ob\mathcal{C}, C \in ob\mathcal{E}$ $A \in ob\mathcal{C}, C \in ob\mathcal{E}$, we have bijections between morphisms $HFA \to C$, morphisms $FA \to KC$, and morphisms $A \to GKC$ which are both natural in A and C, D. \Box

Corollary 3.6. Suppose

$$
\begin{array}{ccc}\n\mathcal{C} & \xrightarrow{F} & \mathcal{D} \\
\downarrow G & & \downarrow H \\
\mathcal{E} & \xrightarrow{K} & \mathcal{F}\n\end{array}
$$

is a commutative square of [categories](#page-1-1) and [functors,](#page-2-0) and suppose all the [functors](#page-2-0) have [left](#page-14-1) [adjoints](#page-14-1). Then the square of [left adjoints](#page-14-1) commutes up to natural isomorphism.

Proof. By [Lemma 3.5,](#page-16-0) both ways round are [left adjoint](#page-14-1) to $HF = KG$, so by [Corollary 3.4](#page-16-1) they're isomorphic. \Box We saw in [Theorem 3.3](#page-15-2) that an [adjoint](#page-14-1) $(F \dashv G)$ $(F \dashv G)$ $(F \dashv G)$ gives rise to a natural transformation $\eta: 1_{\mathcal{C}} \to GF$, c[a](#page-14-1)lled the *unit* of the [adjunction.](#page-14-1) Dually, we have ε : $FG \to 1_D$, the *counit* of $(F \dashv G)$.

Theorem 3.7. Assuming that:

• $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ are [functors](#page-2-0)

Then specifying an [adjunction](#page-14-1) $(F \dashv G)$ $(F \dashv G)$ $(F \dashv G)$ is equivalent to specifying a [natural transformation](#page-3-0) $\eta: 1_{\mathcal{C}} \to GF$ and $\varepsilon: FG \to 1_{\mathcal{D}}$ satisfying the two commutative diagrams:

Proof. Suppose $(F \dashv G)$ $(F \dashv G)$ $(F \dashv G)$. We defined η in the proof of [Theorem 3.3,](#page-15-2) and ε is defined dually. Since ε_{FA} corresponds to 1_{GFA} , the composite $\varepsilon_{FA}(F\eta_A)$ corresponds to $1_{GFA}\eta_A = \eta_A$. But by definition 1_{FA} corresponds to η_A . The other identity is dual.

Conversely, suppose given η and ε satisfying the triangular identities. Given $FA \stackrel{f}{\rightarrow} B$, we define $\Phi(f) = (Gf)\eta_A : A \to GFA \to GB$. Dually, given $A \stackrel{g}{\to} GB$, we define $\Psi(g) = \varepsilon_B(Fg)$. Then $\Psi\Phi(f) = \Psi((Gf)\eta_A) = \varepsilon_B(FGf)F\eta_A = f(\varepsilon_{FA})(F\eta_A) = f$, and dually $\Phi\Psi(g) = g$. [Naturality](#page-3-0) of Φ and Ψ follows from [naturality](#page-3-0) of η and ε . \Box

In [Definition 1.9,](#page-5-2) we had [natural isomorphisms](#page-5-0) $\alpha : 1_{\mathcal{C}} \to GF$ and $\beta : FG \to 1_{\mathcal{D}}$. These look like the [unit](#page-17-0) and [counit](#page-17-0) of an [adjunction](#page-14-1) $(F \dashv G)$ $(F \dashv G)$ $(F \dashv G)$: do they satisfy the triangular identities? No, but we can always change them:

Proposition 3.8. Assuming that:

• $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{C}, \alpha: 1_{\mathcal{C}} \to GF$ and $\beta: FG \to 1_{\mathcal{D}}$ be an [equivalence](#page-5-1) of [categories](#page-1-1) as defined in [Definition 1.9](#page-5-2)

Then there exist isomorphisms $\alpha': 1_{\mathcal{C}} \to GF$ and $\beta': FG \to 1_{\mathcal{D}}$ satisfying the triangular identities. In p[a](#page-14-1)rticular, $(F \dashv G \dashv F)$.

Proof. We define $\alpha' = \alpha$ and take β' to be the composite

$$
FG \stackrel{(FG\beta)^{-1}}{\rightarrow} FGFG \stackrel{(F\alpha_G)^{-1}}{\rightarrow} FG \stackrel{\beta}{\rightarrow} 1_{\mathcal{D}}.
$$

Note that $FG\beta = \beta_{FG}$, since

$$
\begin{array}{ccc}\nFGFG & \xrightarrow{FG\beta} & FG \\
\downarrow_{\beta_{FG}} & & \downarrow_{\beta} \\
FG & \xrightarrow{\beta} & 1_D\n\end{array}
$$

commutes by [naturality](#page-3-0) of β , and β is [monic.](#page-7-1) Similarly, $GF\alpha = \alpha_{GF}$.

To verify the triangular identities, consider

$$
F \xrightarrow{\text{F\alpha}} \text{FGF}^{\left(\beta_{FGF}\right)^{-1}} \text{FGFGF}
$$
\n
$$
F \xrightarrow{\downarrow F^{-1}} \text{FGF}
$$
\n
$$
F \xrightarrow{\left(\beta_F\right)^{-1}} \text{FGF}
$$
\n
$$
F \xrightarrow{\left(\beta_F\right)^{-1}} \text{FGF}
$$
\n
$$
F \xrightarrow{\downarrow \beta_F} \text{F}
$$

Lecture 9 which commutes by [naturality](#page-3-0) of β^{-1} .

For the second triangular identity, we have

$$
G \xrightarrow{\alpha_G} GF G^{GFG\beta)}_{1_G}^{1} GFGFG
$$

\n
$$
G \xrightarrow{\alpha_G} G^{a_G^{-1}}_{1_G} \qquad \downarrow (GF\alpha_G)^{-1} = (\alpha_{GFG})^{-1}
$$

\n
$$
G \xrightarrow{\alpha_G^{-1}} GFG
$$

\n
$$
G\beta
$$

Hence by [Theorem 3.7](#page-17-1) we h[a](#page-14-1)ve $(F \dashv G)$. But $(\beta')^{-1}$ and α^{-1} also satisfy the triangular identities for and [adjunction](#page-14-1) $(G + F)$. \Box

Lemma 3.9. Assuming that:

• $(F : \mathcal{C} \to \mathcal{D} \dashv G : \mathcal{D} \to \mathcal{C})$ an [adjunction](#page-14-1) with [counit](#page-17-0) ε

Then

- (i) G is [faithful](#page-6-0) if and only if ε is [pointwise](#page-12-0) [epic](#page-7-1)
- (ii) G is [full](#page-6-0) and [faithful](#page-6-0) if and only if ε is an isomorphism

Proof.

- (1) Given $g : B \to C$ in $\mathcal{D}, g \varepsilon_B$ corresponds to Gg under the [adjunction.](#page-14-1) So ε_B [epic](#page-7-1) if and only if G acts injectively on morphisms with domain B and specified codomain. Hence ε_B [epic](#page-7-1) for all B if and only if G is [faithful.](#page-6-0)
- (2) Similarly, G [full](#page-6-0) and [faithful](#page-6-0) if and only if for all B and C composition with ε_B is a bijection $\mathcal{D}(B, C) \to \mathcal{D}(FGB, C)$. This happens if and only if $\varepsilon_b : FGB \to B$ is an isomorphism for all B. \Box

Definition 3.10 (Reflection)**.** By a *reflection*, we mean an [adjunction](#page-14-1) satisfying the conditions of [Lemma 3.9\(](#page-18-0)ii). We say $\mathcal{D} \subseteq \mathcal{C}$ is a *reflective subcategory* if it's [full](#page-6-0) and the inclusion $\mathcal{D} \to \mathcal{C}$ hasa [left adjoint.](#page-14-1)

Example 3.11.

- (a) AbGp is [reflective](#page-19-0) in [Gp](#page-1-2): the [left adjoint](#page-14-1) to the inclusion sends G to G/G' where G' is the subgroup generated by commutators. Any homomorphism $G \to A$ with A abelian factors uniquely through the quotient map $G \to G/G'$.
- (b) Recall that a group G is *torsion* if all elements have finite order, and *torsion free* if its only element of finite order is 1. In an abelian group A, the torsion leements form a subgroup A_t , and $A \mapsto A_t$ is [right adjoint](#page-14-1) to the inclusion $\mathbf{tAbGp} \to \mathbf{AbGp}$, since any homomorphism $B \to A$ $B \to A$ $B \to A$ whose B is torsion takes values in A_t . Similarly, $A \mapsto A/A_t$ defines a [left adjoint](#page-14-1) to the inclusion $tfAbGp \rightarrow AbGp$.
- (c) Let KHaus \subseteq [Top](#page-1-2) be the full su[bcategory](#page-1-1) of compact Hausdorff spaces. KHaus is [reflec](#page-19-0)[tive](#page-19-0) in **[Top](#page-1-2)**: the [left adjoint](#page-14-1) is the *Stone-Čech compactification* β .
- (d) Let $\textbf{Seq} \subseteq \textbf{Top}$ $\textbf{Seq} \subseteq \textbf{Top}$ $\textbf{Seq} \subseteq \textbf{Top}$ be the [full](#page-6-0) su[bcategory](#page-1-1) of *sequential spaces*, i.e. those in which all sequentiallyclosed sets are closed. The inclusion $\mathbf{Seq} \to \mathbf{Top}$ $\mathbf{Seq} \to \mathbf{Top}$ $\mathbf{Seq} \to \mathbf{Top}$ has a [right adjoint](#page-14-1) sending X to X_s , the same set as X with all sequentially closed sets declared to be closed. The identity mapping $X_s \to X$ is (continuous, and) the [counit](#page-17-0) of the [adjunction.](#page-14-1)
- (e) The [category](#page-1-1)**Preord** of preordered sets is [reflective](#page-19-0) in [Cat](#page-2-0): the [reflection](#page-19-0) sends C to C/\simeq where \simeq is the congruence identifying all paralell pairs in C.
- (f)Given a topological space X, the poset $\Omega(X)$ of open subsets of X is c[oreflective](#page-19-0) in $\mathcal{P}(X)$, since if U is open and $A \subseteq X$ is arbitrary, we have $U \subseteq A$ if and only if $U \subseteq A^{\circ}$ (recall $^{\circ}$ denotesinterior). Dually, the poset of closed subsets is [reflective](#page-19-0) in $\mathcal{P}(X)$.

4 Limits

Definition4.1 (Diagram). Let J be a [category](#page-1-1) (almost always small, and often finite). By a *diagramof shape* J in a [category](#page-1-1) C, we mean a [functor](#page-2-0) $D: J \to \mathcal{C}$. The [ob](#page-1-1)jects $D(j), j \in \text{ob } J$ are called *vertices* of D, and [mor](#page-1-1)phisms $D(\alpha)$, $\alpha \in \text{mor } J$ are called *edges* of D.

For example, if J is the [category](#page-1-1)

a [diagram](#page-20-1) of shape J is a commutative square in \mathcal{C} .

If J is instead

thena [diagram](#page-20-1) of shape J is a not-necessarily-commutative square.

Definition4.2 (Cone, limit). Let $D : J \to C$ be a [diagram.](#page-20-1) A *cone* over D consists of an [ob](#page-1-1)ject A (its *apex*) together with morphisms $\lambda_j : A \to D(j)$ for each $j \in ob J$ (the *legs* of the cone) such that

commutes for each $\alpha : j \to j'$ in J.

A morphism of cones $(A, (\lambda_j | j \in ob J)) \to (B, (\mu_j | j \in ob J))$ $(A, (\lambda_j | j \in ob J)) \to (B, (\mu_j | j \in ob J))$ $(A, (\lambda_j | j \in ob J)) \to (B, (\mu_j | j \in ob J))$ is a morphism $f : A \to B$ suchthat $\mu_j f = \lambda_j$ for all j. We have a [category](#page-1-1) **Cone**(*D*) of cones over *D*; a *limit* for *D* is a terminal object of $Cone(D)$.

Dually, a *colimit* for D is an initial cone under D.

If $\Delta: \mathcal{C} \to [J, \mathcal{C}]$ $\Delta: \mathcal{C} \to [J, \mathcal{C}]$ $\Delta: \mathcal{C} \to [J, \mathcal{C}]$ is the [functor](#page-2-0) sending A to the *constant diagram* with all [vertices](#page-20-1) A then a cone over Dis a [natural transformation](#page-3-0) $\Delta A \to D$.

Also, [Cone](#page-20-2)(D) is another name for $(\Delta \downarrow D)$, defined as in [Theorem 3.3](#page-15-2)^{[op](#page-2-1)}.

Lecture 10 So by [Theorem 3.3,](#page-15-2) C has [limits](#page-20-2) for all [diagrams](#page-20-1)of shape J if and only if Δ has a [right adjoint.](#page-14-1)

Example 4.3.

- (a)Suppose $J = \emptyset$. If $D : \emptyset \to \mathcal{C}$, then $Cone(D) \cong \mathcal{C}$ $Cone(D) \cong \mathcal{C}$, so a [limit](#page-20-2) for D is a [terminal object.](#page-14-2)
- (b)If $J = \bullet \bullet$, a [diagram](#page-20-1) of shape J is a pair A, B , and a [cone](#page-20-2) over it is a *span*

A [limit](#page-20-2) for it isa [categorical coproduct](#page-10-0)

Dually,a [colimit](#page-20-2) for it isa [coproduct](#page-10-0)

- (c) If J is a [\(small\)](#page-1-3) discrete [category,](#page-1-1) a (co[\)limit](#page-20-2) for $(A_j | j \in J)$ is a (co[\)product](#page-10-0) $\prod_{j\in J} A_j$ $(\sum_{j\in J} A_j).$
- (d)If J is $\bullet \Longrightarrow \bullet$, then a [diagram](#page-20-1) of shape J is a parallel pair $A \stackrel{f}{\Longrightarrow} B$. A [cone](#page-20-2) over it consists of

satisfying $fh = k = gh$, or equivalently of $C \stackrel{h}{\rightarrow} A$ satisfying $fh = gh$. So a [limit](#page-20-2) for $A \stackrel{f}{\longrightarrow} B$ is an [equaliser](#page-10-1) for (f, g) , as defined in [Example 2.6\(](#page-10-2)g).

(e) If J is

$$
\begin{array}{c}\n\bullet \\
\downarrow \\
\bullet \longrightarrow \bullet\n\end{array}
$$

thena [diagram](#page-20-1) of shape J is a *cospan*

$$
\begin{array}{c}\nA \\
\downarrow f \\
B \longrightarrow C\n\end{array}
$$

A cone over it has 3 legs, but if we omit the (redundant) middle one, it's a span

$$
\begin{array}{ccc}\nD & \xrightarrow{h} & A \\
k & & \\
B & & \n\end{array}
$$

completing the cospan to a commutative square. A [limit](#page-20-2) for

$$
A
$$
\n
$$
\downarrow f
$$
\n
$$
B \xrightarrow{g} C
$$

is called a *pullback* for (f, g) . If C has binary [products](#page-10-0) and [equalisers,](#page-10-1) we can construct pullbacks by forming the [equaliser](#page-10-1) $A \times B \frac{f_{\pi_1}}{g_{\pi_2}} C$. Dually, [colimits](#page-20-2) of shape $J^{\rm op}$ $J^{\rm op}$ $J^{\rm op}$ are called *pushouts*.

(f)If $M = \{1, e\}$ is the 2-element with $e^2 = e$, a [diagram](#page-20-1) of shape M is an object A equipped with an idempotent $A \stackrel{e}{\rightarrow} A$. A [limit](#page-20-2) (respectively [colimit\)](#page-20-2) for (A, e) is the [monic](#page-7-1) (respectively [epic\)](#page-7-1) part of a splitting of e.

Note that the [functor](#page-2-0) $\mathbf{Set} \stackrel{F}{\to} [M, \mathbf{Set}]$ $\mathbf{Set} \stackrel{F}{\to} [M, \mathbf{Set}]$ $\mathbf{Set} \stackrel{F}{\to} [M, \mathbf{Set}]$ in [Example 3.2\(](#page-14-3)e) is Δ , so this explains the coincidence of left and [right adjoints.](#page-14-1)

(g) Suppose $J = N$ is the ordered set of natural numbers. A [diagram](#page-20-1) of shape N is a *direct sequence*

 $A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \cdots$,

anda [colimit](#page-20-2) for it is called a *direct limit* A_{∞} .

Dually, we have *inverse sequences*

$$
\cdots \to A_2 \to A_1 \to A_0,
$$

and their [limits](#page-20-2) are called *inverse limits*.

For example in topology, an infinite dimensional CW-complex X is the direct limit of its n-skeletons X_n . In algebra, the ring of p-adic integers is the [limit](#page-20-2) of the inverse sequence

$$
\cdots \to \mathbb{Z}/p^3\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \to \{0\}
$$

in [Rng](#page-1-2).

Proposition 4.4. Assuming that:

• $\mathcal C$ a [category](#page-1-1)

Then

- (i) If C has [equalisers](#page-10-1) and all [small](#page-1-3) [products](#page-10-0) (including empty [product\)](#page-10-0), then C has all small [limits.](#page-20-2)
- (ii) If $\mathcal C$ has [equalisers](#page-10-1) and all finite [products](#page-10-0) (including empty [product\)](#page-10-0), then $\mathcal C$ has all finite [limits.](#page-20-2)
- (iii)If $\mathcal C$ has [pullbacks](#page-22-0) and a [terminal object,](#page-14-2) then $\mathcal C$ has all finite [limits.](#page-20-2)

Proof.

(i)& (ii) Let $D: J \to \mathcal{C}$ be a [diagram.](#page-20-1) Form the [products](#page-10-0)

$$
P = \prod_{j \in \text{ob } J} D(j)
$$

$$
Q = \prod_{\alpha \in \text{mor } J} D(\text{cod } \alpha)
$$

We have morphisms $P \frac{f}{\sqrt{g}} Q$ defined by $\pi_{\alpha} f = \pi_{\text{cod } \alpha}$ $\pi_{\alpha} f = \pi_{\text{cod } \alpha}$ $\pi_{\alpha} f = \pi_{\text{cod } \alpha}$ and $\pi_{\alpha} g = D(\alpha) \pi_{\text{dom } \alpha}$ $\pi_{\alpha} g = D(\alpha) \pi_{\text{dom } \alpha}$ $\pi_{\alpha} g = D(\alpha) \pi_{\text{dom } \alpha}$ for all α . Let $e \stackrel{e}{\to} P$ $e \stackrel{e}{\to} P$ $e \stackrel{e}{\to} P$ be an [equaliser](#page-10-1) for (f, g) . The morphisms $\lambda_j = \pi_j e : E \to P \to D(j)$ form a [cone](#page-20-2) over D, since for any $\alpha : j \to j'$ we have

$$
D(\alpha)\lambda_j = D(\alpha)\pi_j e = \pi_\alpha g e = \pi_\alpha f e = \pi_{j'} e = \lambda j'.
$$

Itis a [limit:](#page-20-2) given any [cone](#page-20-2) $(A, (\mu_j \mid j \in \text{ob } J))$ $(A, (\mu_j \mid j \in \text{ob } J))$ $(A, (\mu_j \mid j \in \text{ob } J))$ over D, the μ_j form a cone over the discrete [diagram](#page-20-1) with vertices $D(j)$, so they induce a unique $\mu : A \to P$. Then $f\mu = g\mu$ since the μ_j sform a [cone](#page-20-2) over D, so μ factors uniquely as ev, and v is the unique factorisation of $(\mu_j \mid j \in \text{ob } J)$ $(\mu_j \mid j \in \text{ob } J)$ $(\mu_j \mid j \in \text{ob } J)$ through $(\lambda_j \mid j \in \text{ob } J)$.

(iii)If 1 is a [terminal object](#page-14-2) of C, then we can construct $A \times B$ as the [pullback](#page-22-0) of

Then we can construct $\prod_{i=1}^{n} A_i$ as $A_1 \times (A_2 \times (\cdots \times A_n) \cdots)).$ To form an [equaliser](#page-10-1) of $A \stackrel{f}{\longrightarrow} B$, consider the [pullback](#page-22-0) of

$$
A \downarrow (1_A, f)
$$

$$
A \xrightarrow[1_A, g]{} A \times B
$$

Any [cone](#page-20-2)

$$
\begin{array}{ccc}\nC & \xrightarrow{h} & A \\
\downarrow & & \\
A\n\end{array}
$$

overthis has $h = k = \pi_1(1_A, g)k = \pi_1(1_A, f)h$. So a [limit cone](#page-20-2) has the universal property of an [equaliser](#page-10-1) for (f, g) . \Box

Definition4.5 (Limit preserving / reflecting / creating). Let $F : \mathcal{C} \to \mathcal{D}$ be a [functor.](#page-2-0)

- (a) We say F preserves [limits](#page-20-2) of shape J if, given $D: J \to \mathcal{C}$ and a limit [cone](#page-20-2) $(L, (\lambda_j \mid j \in \text{ob } J))$ $(L, (\lambda_j \mid j \in \text{ob } J))$ $(L, (\lambda_j \mid j \in \text{ob } J))$ forit, $(FL, (F\lambda_j \mid j \in \text{ob } J))$ $(FL, (F\lambda_j \mid j \in \text{ob } J))$ $(FL, (F\lambda_j \mid j \in \text{ob } J))$ is a [limit](#page-20-2) for $FD: J \to D$.
- (b) We say F reflects [limits](#page-20-2) of shape J if given $D: J \to \mathcal{C}$, any [cone](#page-20-2) over D which maps to a [limit cone](#page-20-2)in D is a [limit](#page-20-2) in C .
- (c) We say F creates [limits](#page-20-2)of shape J if, given $D: J \to \mathcal{C}$ and a [limit cone](#page-20-2) $(L, (\lambda_j | j \in \text{ob } J))$ $(L, (\lambda_j | j \in \text{ob } J))$ $(L, (\lambda_j | j \in \text{ob } J))$ overFD, there exists a [cone](#page-20-2) over D whose image under F is $\cong (L,(\lambda_i))$, and any such cone isa [limit](#page-20-2) in \mathcal{C} .

Lecture 11

Wesay a [category](#page-1-1) $\mathcal C$ is *complete* if it has all [small](#page-1-3) [limits.](#page-20-2)

Corollary4.6. In each of the statements of [Proposition 4.4,](#page-23-0) we may replace \mathcal{C} has' by either 'D has and $G: \mathcal{D} \to \mathcal{C}$ [preserves'](#page-24-0) or 'C has and $\mathcal{D} \to \mathcal{C}$ [creates'](#page-24-0).

Proof. Exercise.

Example 4.7.

- (a) The [functor](#page-2-0) $\mathbf{Gp} \to \mathbf{Set}$ [creates](#page-24-0) all [small](#page-1-3) [limits:](#page-20-2) given a family of groups $\{G_i \mid i \in I\}$, there's a unique structure on $\prod_{i\in I} G_i$ making the projections into homomorphisms, and it'sa [product](#page-10-0) in [Gp](#page-1-2). Similarly for [equalisers.](#page-10-1) But $Gp \rightarrow Set$ $Gp \rightarrow Set$ doesn't [preserve](#page-24-0) or [reflect](#page-24-0) [coproducts.](#page-10-0)
- (b) The forgetful [functor](#page-2-0) $\text{Top} \rightarrow \text{Set}$ [preserves](#page-24-0) [small](#page-1-3) [limits](#page-20-2) and [colimits,](#page-20-2) but doesn't [reflect](#page-24-0) them.
- (c) The inclusion $\mathbf{AbGp} \to \mathbf{Gp}$ $\mathbf{AbGp} \to \mathbf{Gp}$ $\mathbf{AbGp} \to \mathbf{Gp}$ [reflects](#page-24-0) [coproducts,](#page-10-0) but doesn't [preserve](#page-24-0) them.

A [coproduct](#page-10-0) $A * B$ in \bf{Gp} \bf{Gp} \bf{Gp} is nonabelian if both A and B are nontrivial. So the only [cones](#page-20-2) in **Ab[Gp](#page-1-2)** thot could map to [coproduct](#page-10-0) [cones](#page-20-2) in \mathbf{Gp} are those where either A or B is trivial. But if $A = \{1\}$ then $A \times B \cong B$ in either [category.](#page-1-1)

(d)If D is a [reflective subcategory](#page-19-0) of C, the inclusion $D \to C$ [creates](#page-24-0) any [limits](#page-20-2) which exist.

Given $D: J \to \mathcal{D}$ and a [limit cone](#page-20-2) $(L, (x_j | j \in ob J))$ $(L, (x_j | j \in ob J))$ $(L, (x_j | j \in ob J))$ for it in C, the morphisms $FL \stackrel{Fx_j}{\to}$ $FD(j) \stackrel{\eta_{D(j)}^{-1}}{\rightarrow} D(j)$ $FD(j) \stackrel{\eta_{D(j)}^{-1}}{\rightarrow} D(j)$ $FD(j) \stackrel{\eta_{D(j)}^{-1}}{\rightarrow} D(j)$ (where F is the [left adjoint,](#page-14-1) and η is the [unit\)](#page-17-0) form a [cone](#page-20-2) over D, so they induce a unique $u : FL \to L$. Now $u\eta_L : L \to L$ is 1_L since it's a factorisation of the [limit](#page-20-2) through itself. So $\eta_L u \eta_L = \eta_L$, i.e. $\eta_L u$ is a factorisation of η_L through itself, so $\eta_L u = 1_{FL}$ $\eta_L u = 1_{FL}$ $\eta_L u = 1_{FL}$. So the $\eta_{D(j)}^{-1}(F\lambda_j)$ form a [limit cone](#page-20-2) in C, and hence in D.

(e) If D has [limits](#page-20-2) of shape J, so does $[\mathcal{C}, \mathcal{D}]$ $[\mathcal{C}, \mathcal{D}]$ $[\mathcal{C}, \mathcal{D}]$ for any C, and the forgetful [functor](#page-2-0) $[\mathcal{C}, \mathcal{D}] \to \mathcal{D}^{\text{ob } \mathcal{C}}$ $[\mathcal{C}, \mathcal{D}] \to \mathcal{D}^{\text{ob } \mathcal{C}}$ $[\mathcal{C}, \mathcal{D}] \to \mathcal{D}^{\text{ob } \mathcal{C}}$ [creates](#page-24-0) them (strictly).

Given $D: J \to [C, D]$ $D: J \to [C, D]$, we can regard it as a [functor](#page-2-0) $J \times C \to D$. For each $A \in ob \mathcal{C}, D(\bullet, A)$ $A \in ob \mathcal{C}, D(\bullet, A)$ $A \in ob \mathcal{C}, D(\bullet, A)$ isa [diagram](#page-20-1) of shape J in D, so has a [limit](#page-20-2) $(LA,(\lambda_{j,A}:LA \to D(j,A) | j \in ob J))$ $(LA,(\lambda_{j,A}:LA \to D(j,A) | j \in ob J))$ $(LA,(\lambda_{j,A}:LA \to D(j,A) | j \in ob J))$. Given $f: A \to B$ $f: A \to B$ $f: A \to B$ in C, the composites $LA \stackrel{\lambda_{j,A}}{\to} D(j, A) \stackrel{D(j,f)}{\to} D(j, B)$ form a [cone](#page-20-2) over $D(\bullet, B)$, so induce a unique $Lf: LA \to LB$. [Functoriality](#page-2-0) of L follows fro uniqueness, and this is the uniqueway of making L into a [functor](#page-2-0) which lifts the $\lambda_{j,\bullet}$ to a [cone](#page-20-2) in $[\mathcal{C},\mathcal{D}].$ $[\mathcal{C},\mathcal{D}].$ $[\mathcal{C},\mathcal{D}].$

The fact that it'sa [limit cone](#page-20-2) is straightforward.

Remark 4.8. In any [category,](#page-1-1) $A \stackrel{f}{\rightarrow} B$ is [monic](#page-7-1) if and only if

$$
A \xrightarrow{1_A} A
$$

\n
$$
\downarrow_{1_A} \qquad \downarrow_f
$$

\n
$$
A \xrightarrow{f} B
$$

isa [pullback.](#page-22-0) Hence, if D has [pullbacks,](#page-22-0) then any [monomorphism](#page-7-1) in $[\mathcal{C}, \mathcal{D}]$ is [pointwise](#page-12-0) [monic,](#page-7-1) since its [pullback](#page-22-0) along itself is contsructed [pointwise.](#page-12-0)

Lemma 4.9. Assuming that:

• $G: \mathcal{D} \to \mathcal{C}$ has a [left adjoint](#page-14-1)

Then G [preserves](#page-24-0) all [limits](#page-20-2) which exist in D .

Proof 1. Suppose $(F \dashv G)$ $(F \dashv G)$ $(F \dashv G)$, and suppose C and D have [limits](#page-20-2) of shape J. Then the diagram

$$
\begin{array}{ccc}\n\mathcal{C} & \xrightarrow{F} & \mathcal{D} \\
\downarrow^{\Delta} & & \downarrow^{\Delta} \\
[J, "C"] & \xrightarrow{[J, F]} & [J, "D"]\n\end{array}
$$

commutes, and all the [functors](#page-2-0) in it have [right adjoints,](#page-14-1) so

$$
[J, "D"] \xrightarrow{[J, G]} [J, "C"]
$$

$$
\downarrow \lim_{D} \qquad G \longrightarrow C
$$

commutes up to isomorphism by [Corollary 3.6.](#page-16-2)

Proof2. Suppose given $D: J \to \mathcal{D}$ and a [limit cone](#page-20-2) $(L, (\lambda_j | j \in ob J))$ $(L, (\lambda_j | j \in ob J))$ $(L, (\lambda_j | j \in ob J))$ over it. Give a [cone](#page-20-2) $(A, (\mu_j : A \to GD(j)))$ $(A, (\mu_j : A \to GD(j)))$ $(A, (\mu_j : A \to GD(j)))$ over GD, the transposes $\overline{\mu_j} : FA \to D(j)$ form a [cone](#page-20-2) over D by [naturality](#page-3-0) of the [adjunction,](#page-14-1) so induce a unique $\overline{\mu} : FA \to L$ such that $\lambda_j \overline{\mu} = \overline{\mu_j}$ for all j.

Then $\mu : A \to GL$ is the unique morphism satisfying $(G\lambda_j)\mu = \mu_j$ for all j.

Lemma 4.10. Assuming that:

- \bullet J a [diagram](#page-20-1) shape
- D has all [limits](#page-20-2) of shape J
- $G: \mathcal{D} \to \mathcal{C}$ [preserves](#page-24-0) all [limits](#page-20-2) of shape J

Then for each $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$, $(A \downarrow G)$ has [limits](#page-20-2) of shape J and the forgetful [functor](#page-2-0) $(A \downarrow G) \stackrel{U}{\rightarrow} \mathcal{D}$ creates them.

Proof. Suppose given $D: J \to (A \downarrow G)$; write $D(j) = (UD(j), f_j : A \to GUD(j))$ and let $(L, (\lambda_j | j \in G))$ [ob](#page-1-1)J)) be a [limit](#page-20-2) for UD. Since the [edges](#page-20-1) of D are morphisms in $(A \downarrow G)$, the f_j form a [cone](#page-20-2) over GUD , so there's a unique $f : A \to GL$ satisfying $(G\lambda_j)f = f_j$ for all j.

So (L, f) is the unique lifting of L to an object of $(A \downarrow G)$ which makes the λ_j into morphisms $(L, f) \rightarrow$ $(UD(j), f_j)$ $(UD(j), f_j)$ $(UD(j), f_j)$ in $(A \downarrow G)$. The fact that these morphisms form a [limit cone](#page-20-2) is straightforward. \Box

 \Box

 \Box

Lecture 12

Can we represent an [initial object](#page-14-2) asa [limit?](#page-20-2)

Lemma 4.11. Assuming that:

• $\mathcal C$ a [category](#page-1-1)

Then specifying an [initial object](#page-14-2)of C is equivalent to specifying a [limit](#page-20-2) for $1_{\mathcal{C}} : \mathcal{C} \to \mathcal{C}$.

Proof. First suppose I is [initial.](#page-14-2)The unique morphisms $I \to A$, $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$, form a [cone](#page-20-2) over $1_{\mathcal{C}}$, and it's a [limit cone](#page-20-2) since if $(A,(f_B : A \to B \mid B \in ob \mathcal{C}))$ $(A,(f_B : A \to B \mid B \in ob \mathcal{C}))$ $(A,(f_B : A \to B \mid B \in ob \mathcal{C}))$ is any [cone](#page-20-2) over $1_{\mathcal{C}},$ then f_I is its unique factorisation through the one with apex I.

Conversely,suppose given a [limit](#page-20-2) $(I,(f_A: I \to A \mid A \in ob \mathcal{C}))$ $(I,(f_A: I \to A \mid A \in ob \mathcal{C}))$ $(I,(f_A: I \to A \mid A \in ob \mathcal{C}))$ for $1_{\mathcal{C}}$. Then I is weakly [initial](#page-14-2) (i.e. it admits morphisms to every object of C); and if $g: I \to A$ then $gf_I = f_A$. In particular, $f_A f_I = f_A$ for all A, so f_I is a factorisation of the [limit cone](#page-20-2) through itself, so $f_I = 1_I$ and I is [initial.](#page-14-2) \Box

The 'primitive' Adjoint Functor Theorem follows from [Lemma 4.10,](#page-26-0) [Lemma 4.11](#page-27-0) and [Theorem 3.3.](#page-15-2) But it only applies to preorders (see Example Sheet).

Theorem 4.12 (General Adjoint Functor Theorem)**.** Assuming that:

• D is [complete](#page-24-1) and [locally small](#page-8-1)

Then $G: \mathcal{D} \to \mathcal{C}$ has a [left adjoint](#page-14-1) if and only if G preserves [small](#page-1-3) [limits](#page-20-2) and satisfies the *solution-set condition*: for every $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$ $A \in ob \mathcal{C}$, there's a set $\{(B_i, f_i) \mid i \in I\}$ of objects of $(A \downarrow G)$ which is collectively [weakly](#page-27-1) [initial.](#page-14-2)

Proof.

- \Rightarrow G preserves [limits](#page-20-2) by [Lemma 4.9,](#page-26-1) and $\{(FA, \eta_A)\}\$ is a singleton [solution-set](#page-27-2) for each A.
- \Leftarrow By [Lemma 4.10,](#page-26-0) the [categories](#page-1-1) $(A \downarrow G)$ are [complete,](#page-24-1) and they're [locally small](#page-8-1) since D is.

So we need to show: if A is [complete](#page-24-1) and [locally small,](#page-8-1)and has a [weakly](#page-27-1) [initial](#page-14-2) set $\{A_i \mid i \in I\}$, then it has an [initial object.](#page-14-2) First form $P = \prod_{i \in I} A_i$; then P is [weakly](#page-27-1) [initial.](#page-14-2) Now form the [limit](#page-20-2) of the [diagram](#page-20-1) with [vertices](#page-20-1) P and P', with the morphisms $P \to P'$ being all endomorphisms of P.

Writing $I \stackrel{i}{\to} P$ for this, I is still [weakly](#page-27-1) [initial.](#page-14-2) Suppose given $I \stackrel{f}{\to} B$; let $E \stackrel{e}{\to} I$ be their [equaliser.](#page-10-1) There exists some $h : P \to E$. Now ieh : $P \to P$, but we also have $1_P : P \to P$, so $i = 1$ $pi = i$ ehi. But i is [monic,](#page-7-1) so we get $ehi = 1$, so e is [split](#page-7-2) [epic,](#page-7-1) and hence $f = g$. \Box

Example 4.13.

(a) Consider the forgetful [functor](#page-2-0) $U : \mathbf{Gp} \to \mathbf{Set}$ $U : \mathbf{Gp} \to \mathbf{Set}$. \mathbf{Gp} has and U [preserves](#page-24-0) all [small](#page-1-3) [limits](#page-20-2) by

[Example 4.7\(](#page-25-0)a), and \bf{Gp} \bf{Gp} \bf{Gp} is [locally small.](#page-8-1) Given A, any $A \stackrel{f}{\rightarrow} UG$ factors through $A \rightarrow UG'$ where G' is the subgroup generated by $\{f(a) \mid a \in A\}$. Also card $G' \le \max\{\aleph_0, \text{card }A\}$. Let B be a set of this cardinality: considering all subsets $B' \subseteq B$, all group structures on B'and all functions $A \to B'$, we get a [solution-set](#page-27-2) at A.

(b) Let CLat be the [category](#page-1-1) of complete lattices (posets with all joins and all meets). U : **CLat** \rightarrow [Set](#page-1-2) creates [limits](#page-20-2) just like $U : \mathbf{Gp} \rightarrow \mathbf{Set}$ $U : \mathbf{Gp} \rightarrow \mathbf{Set}$ $U : \mathbf{Gp} \rightarrow \mathbf{Set}$.

In 1965, A. Hales showed that there exist arbitrarily large complete lattices generated by 3 element subsets, so the [solution-set condition](#page-27-2) fails for $A = \{a, b, c\}.$

Nowalso that **CLat** doesn't have a [coproduct](#page-10-0) for 3 copies of $\{0, a, 1\}$.

Definition4.14 (Sub[ob](#page-1-1)ject). By a subobject of $A \in ob \mathcal{C}$, we mean a [monomorphism](#page-7-1) $A' \rightarrow A$. We order subobjects by $(A' \rightarrowtail A) \leq (A'' \rightarrowtail A)$ if there exists

We write $\text{Sub}_{\mathcal{C}}(A)$ for this preorder. Wesay C is well-powered if every $\text{Sub}_{\mathcal{C}}(A)$ $\text{Sub}_{\mathcal{C}}(A)$ $\text{Sub}_{\mathcal{C}}(A)$ is equivalent to a [small](#page-1-3) preorder.

For example, [Set](#page-1-2) is [well-powered](#page-28-0)since the inclusions $A' \subseteq A$ form a representative set of [subobjects](#page-28-0) of A.It is [well-copowered](#page-28-0) since isomorphism classes of [epimorphisms](#page-7-1) $A \rightarrow B$ correspond to equivalence relations on A.

Lemma 4.15. Assuming that: • a [pullback](#page-22-0) diagram

$$
\begin{array}{ccc}\nP & \xrightarrow{h} & A \\
\downarrow{k} & & \downarrow{f} \\
B & \xrightarrow{g} & C\n\end{array}
$$

where f is [monic](#page-7-1)

Then k is [monic.](#page-7-1)

Proof. Suppose given $D \frac{1}{m} P$ with $kl = km$. Then $fhl = gkl = gkm = fhm$, but f is [monic](#page-7-1) so $hl = hm.$ So l and m are both factorisations of

$$
D \xrightarrow[k] k l
$$

$$
B
$$

through the [pullback,](#page-22-0) and hence $l = m$.

Theorem 4.16 (Special Adjoint Functor Theorem)**.** Assuming that:

- $\mathcal C$ and $\mathcal D$ are [locally small](#page-8-1)
- D is [complete](#page-24-1) and [well-powered](#page-28-0)
- •D has a c[oseparating](#page-11-0) set of objects

Then $G : \mathcal{D} \to \mathcal{C}$ has a [left adjoint](#page-14-1) if and only if it [preserves](#page-24-0) all [small](#page-1-3) [limits.](#page-20-2)

Lecture 13

Proof.

 \Rightarrow is [Lemma 4.9.](#page-26-1)

 \Leftarrow Let $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$. As in [Theorem 4.12,](#page-27-3) $(A \downarrow G)$ inherits [completen](#page-24-1)ess and [locally smalln](#page-8-1)ess from D: it also inherits [well-poweredn](#page-28-0)ess since [subobjects](#page-28-0) of (B, f) in $(A \downarrow G)$ are those $B' \stackrel{m}{\rightarrow} B$ in D such that f factors through $GB' \stackrel{Gm}{\rightarrow} GB$. (Note that the forgetful [functor](#page-2-0) $(A \downarrow G) \rightarrow D$ preserves [monomorphisms](#page-7-1) by [Remark 4.8\)](#page-25-1).And if $\{S_i \mid i \in I\}$ is a c[oseparating](#page-11-0) set for D , then $\{(S_i, f) \mid i \in I, f \in C(A, GS_i)\}\$ $\{(S_i, f) \mid i \in I, f \in C(A, GS_i)\}\$ $\{(S_i, f) \mid i \in I, f \in C(A, GS_i)\}\$ is a c[oseparating](#page-11-0) set for $(A \downarrow G)$.

Sowe need to show: if A is [complete,](#page-24-1) [locally small](#page-8-1) and [well-powered](#page-28-0) and has a c[oseparating](#page-11-0) set $\{S_i \mid i \in I\}$, then A has an [initial object.](#page-14-2) First form $P = \prod_{i \in I} S_i$; now consider the [limit](#page-20-2) of the [diagram](#page-20-1)

whose edges are a representative set of [subobjects](#page-28-0) of P.

If I is the apex of the [limit cone,](#page-20-2) the legs $I \to P'$ of the [limit cone](#page-20-2) are all [monic](#page-7-1) by the argument of [Lemma 4.15,](#page-28-1) and in particular $I \to P$ is [monic,](#page-7-1) and it's a least [subobject](#page-28-0) of P.

Ifwe had $I \stackrel{f}{\longrightarrow} A$, their [equaliser](#page-10-1) $E \to I$ would be a [subobject](#page-28-0) of P contained in $I \rightarrowtail P$, so $E \to I$ is an isomorphism, and hence $f = q$.

Given any $A \in ob \mathcal{A}$ $A \in ob \mathcal{A}$ $A \in ob \mathcal{A}$ form the [product](#page-10-0) $Q = \prod_{(i,f)} S_i$ over all pairs (i,f) with $f_i A \to S_i$ and the morphism $g: A \to Q$ with $\pi_{i,f}g = f$ for all (i, f) . Since the S_i are c[oseparating,](#page-11-0) g is [monic.](#page-7-1) We also have $h: P \to Q$ defined by $\pi_{i,f}$ $h = \pi_i$ for all (i, f) .

Form the [pullback](#page-22-0)

$$
\begin{array}{ccc}\nB & \xrightarrow{k} & A \\
\downarrow{l} & & \downarrow{g} \\
P & \xrightarrow{h} & Q\n\end{array}
$$

then l is [monic](#page-7-1) by [Lemma 4.15,](#page-28-1) so $I \rightarrow P$ factors as $I \rightarrow B \stackrel{l}{\rightarrow} P$ and hence we have $I \rightarrow B \stackrel{k}{\rightarrow} A$. So I is [initial.](#page-14-2) \Box

Example 4.17. Consider the inclusion **KHaus** $\stackrel{I}{\rightarrow}$ **[Top](#page-1-2)**. Tychonoff's Theorem says **KHaus** is closed under [\(small\)](#page-1-3) [products](#page-10-0) in [Top](#page-1-2). It's closed under [equalisers,](#page-10-1) since [equalisers](#page-10-1) of pairs in KHaus are closed inclusions.

So KHaus is [complete,](#page-24-1) and I [preserves](#page-24-0) [limits.](#page-20-2) KHaus and [Top](#page-1-2) are [locally small,](#page-8-1) and KHaus is [well-powered](#page-28-0) since [subobjects](#page-28-0) of X is isomorphic to inclusions of closed subspaces. And **KHaus**has a c[oseparator](#page-11-0) $[0, 1]$, by Uryson's Lemma. So by [Theorem 4.16,](#page-29-0)I has a [left adjoint](#page-14-1) β .

Remark 4.18.

- (a) The construction in [Theorem 4.16](#page-29-0) is closely parallel to Čech's original construction of β . Given a space, Čech constructs $P = \prod_{f:x\rightarrow[0,1]}[0,1]$ and the map $g: X \rightarrow P$ defined by $\pi_f g = f$. Then he takes βX to be the closure of the image of g, i.e. the smallest [subobject](#page-28-0) of (P, g) in $(X \downarrow I)$.
- (b)We could have constructed β using [Theorem 4.12:](#page-27-3) to get a [solution-set](#page-27-2) for I at an object X of **[Top](#page-1-2)**, note that any continuous $f: X \to IY$ factors as $X \to IY' \to IY$ where Y' is the closure of the image of f, and then since Y' has a dense subspace of cardinality \leq card X, we have card $Y' \leq 2^{2^{\text{card } X}}$.

5 Monads

Suppose we h[a](#page-14-1)ve $C \frac{F}{\epsilon_G} \mathcal{D}$, $(F \dashv G)$. How much of the [adjunction](#page-14-1) can we describe in terms of C (supposing we can't know anything about \mathcal{D} , or know very little about it)?

We have:

- The [functor](#page-2-0) $T = GF : \mathcal{C} \to \mathcal{C}$.
- The [unit](#page-17-0) $\eta: 1_{\mathcal{C}} \to T$.
- The natural transformation $\mu = G \varepsilon_F : TT \to T$.

From the triangular identities of [Theorem 3.7,](#page-17-1) we obtain the commutative triangles:

$$
(1): \quad \begin{array}{ccc}\nT & \xrightarrow{T\eta} TT & & T & \xrightarrow{\eta_T} TT \\
\downarrow_{1_T} & \downarrow_{\mu} & & (2): & \searrow_{1_T} & \downarrow_{\mu} \\
T & & & T & & T\n\end{array}
$$

and from [naturality](#page-3-0) of ε we obtain

$$
(3): \quad \begin{array}{c} TTT \xrightarrow{T\mu} TT \\ \downarrow \mu_T \\ TT \xrightarrow{\mu} T \end{array} \begin{array}{c} \downarrow TT \\ \downarrow \mu \\ T \end{array}
$$

Definition5.1 (Monad). A *monad* on a [category](#page-1-1) C is a triple $(T, \eta, \mu) = \mathbb{T}$ where $T : \mathcal{C} \to \mathcal{C}$, and $\eta: 1_{\mathcal{C}} \to T$ and $\mu: TT \to T$ satisfy the commutative diagrams [\(1\), \(2\)](#page-31-1) and [\(3\)](#page-31-2) above.

Example 5.2.

- (a) Let M be a monoid. The [functor](#page-2-0) $M \times (\bullet)$: [Set](#page-1-2) \to Set has a [monad](#page-31-3) structure: $\eta_A : A \to$ $M \times A$ is $a \mapsto (1, a)$ and $\mu_A : M \times M \times A \to M \times A$ sends (m, m', a) to (mm', a) . The three diagrams 'are' the unit and associative laws in M.
- (b) The [functor](#page-2-0) $P : \mathbf{Set} \to \mathbf{Set}$ $P : \mathbf{Set} \to \mathbf{Set}$ $P : \mathbf{Set} \to \mathbf{Set}$ has a [monad](#page-31-3) structure: the [unit](#page-17-0) $\eta_A : A \to PA$ is the mapping $a \mapsto \{a\}$ [\(Example 1.7\(](#page-4-0)c)) and the multiplication $\mu_A : PPA \to PA$ sends a set of subsets of A to their union.

Lecture 14

Does every [monad](#page-31-3) come from an [adjunction?](#page-14-1)

Answered by Eilenberg-Moore and by Kleisli (1965).

Note that the [monad](#page-31-3) of [Example 5.2\(](#page-31-4)a) is induced by [Set](#page-1-2) $\frac{M\times(•)}{h}$ $\frac{1}{\sqrt{U}}$ [*M*, **[Set](#page-3-0)**] and that of [Example 5.2\(](#page-31-4)b) is induced by **[Set](#page-1-2)** $\frac{P}{\epsilon_U}$ **CSLatt**, where **CSLatt** is the [category](#page-1-1) of *complete semilattices* (posets, with arbitrary joins). The free complete semilattice on A is $\mathcal{P}(A)$: every $f : A \to US$ extends uniquely to $\overline{f}: \mathcal{P}(A) \to S$ where $\overline{f}(A') = \bigvee \{f(a) \mid a \in A'\}.$

An M-set (respectively a complete semilattice) is a set A equipped with a suitable mapping $M \times A \to A$ (respectively $\mathcal{P}(A) \stackrel{\vee}{\to} A$).

Definition5.3 (Eilenberg-Moore algebra). Let $\mathbb{T} = (T, \eta, \mu)$ $\mathbb{T} = (T, \eta, \mu)$ $\mathbb{T} = (T, \eta, \mu)$ be a [monad](#page-31-3) on C. By an *Eilenberg-Moore algebra* for [T](#page-31-3) we mean a pair (A, α) where $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$ and $\alpha : TA \to TA$ satisfies

$$
(4): \quad \begin{array}{ccc}\nA & \xrightarrow{\eta_A} T A & & TT A & \xrightarrow{T_A} T A \\
\downarrow^{\alpha} & & (5): & \downarrow^{\mu_A} & \downarrow^{\alpha} \\
A & & T A & \xrightarrow{T_A} A\n\end{array}
$$

A *homomorphism* $f : (A, \alpha) \to (B, \beta)$ is a morphism $f : A \to B$ satisfying

 $($

$$
6): \quad \begin{array}{ccc}\n T A & \xrightarrow{Tf} & T B \\
 \downarrow \alpha & & \downarrow \beta \\
 A & \xrightarrow{f} & B\n \end{array}
$$

We write $C^{\mathbb{T}}$ $C^{\mathbb{T}}$ $C^{\mathbb{T}}$ for the [category](#page-1-1) of \mathbb{T} -algebras and homomorphisms.

Proposition 5.4. Assuming that:

- $\mathcal C$ a [category](#page-1-1)
- $\mathbb T$ $\mathbb T$ a [monad](#page-31-3)

[T](#page-32-0)henthe forgetful functor $\mathcal{C}^{\mathbb{T}} \stackrel{G^{\mathbb{T}}}{\to} \mathcal{C}$ has a [left adjoint](#page-14-1) $F^{\mathbb{T}}$, and the [adjunction](#page-14-1) induces the [monad](#page-31-3) [T](#page-31-3).

Proof. We define $F^{\mathbb{T}}A = (TA, \mu_A)$ $F^{\mathbb{T}}A = (TA, \mu_A)$ $F^{\mathbb{T}}A = (TA, \mu_A)$ (an algebra by [\(2\)](#page-31-1) and [\(3\)\)](#page-31-2) and $F^{\mathbb{T}}(A \stackrel{f}{\to} B) = Tf$ (a homomorphism by [naturality](#page-3-0) of μ). Clearly, $F^{\mathbb{T}}$ $F^{\mathbb{T}}$ $F^{\mathbb{T}}$ is [functorial](#page-2-0) and $G^{\mathbb{T}}F^{\mathbb{T}} = T$.

We establish the [adjunction](#page-14-1) using [Theorem 3.7:](#page-17-1) its [unit](#page-17-0) is η , and the [counit](#page-17-0) $\varepsilon_{(A,\alpha)}$ is just α (a homomorphism $F^{\mathbb{T}}A \to (A,\alpha)$ $F^{\mathbb{T}}A \to (A,\alpha)$ $F^{\mathbb{T}}A \to (A,\alpha)$, by [\(5\),](#page-32-1) and natural by [\(6\)\)](#page-32-1).

The triangular identity

is just (1) , and

is [\(4\).](#page-32-1)

Finally, $G\varepsilon_{F^{T}A} = \mu$ $G\varepsilon_{F^{T}A} = \mu$ $G\varepsilon_{F^{T}A} = \mu$ by definition of $F^{T}A$. So the [adjunction](#page-14-1) induces (T, η, μ) .

 \Box

Note: $\mathcal{C} \xrightarrow[\sigma]{F} \mathcal{D}$ induces \mathbb{T} \mathbb{T} \mathbb{T} , we can replace \mathcal{D} by its [full](#page-6-0) su[bcategory](#page-1-1) on objects FA .

So in trying to construct \mathcal{D} , we may assume F is surjective (indeed, bijective) on objects. The morphisms $FA \to FB$ in D must correspond to morphisms $A \to GFB = TB$ in C.

Definition5.5 (Kleisli category). Let \mathbb{T} \mathbb{T} \mathbb{T} be a [monad](#page-31-3) on C. The *Kleisli category* $C_{\mathbb{T}}$ is defined by $ob\mathcal{C}_{\mathbb{T}} = ob\mathcal{C}$ $ob\mathcal{C}_{\mathbb{T}} = ob\mathcal{C}$ $ob\mathcal{C}_{\mathbb{T}} = ob\mathcal{C}$ $ob\mathcal{C}_{\mathbb{T}} = ob\mathcal{C}$, morphsims $A \stackrel{f}{\rightarrow} B$ in $\mathcal{C}_{\mathbb{T}}$ are morphisms $A \stackrel{f}{\rightarrow} TB$ in \mathcal{C} . The identity $A \rightarrow A$ is $A \stackrel{\eta_A}{\rightarrow} TA$, and the composite of $A \stackrel{f}{\rightarrow} B \stackrel{g}{\rightarrow} C$ is $A \stackrel{f}{\rightarrow} TB \stackrel{Tg}{\rightarrow} TTC \stackrel{\mu_C}{\rightarrow} TC$. For the [unit](#page-17-0) and associative laws, consider the [diagrams](#page-20-1)

$$
A \xrightarrow{f} TB \xrightarrow{T\eta_B} TTB
$$
\n
$$
TB
$$
\n
$$
A \xrightarrow{H_A} TA
$$
\n
$$
TB
$$
\n
$$
TB \xrightarrow{T\eta_B} TTB
$$
\n
$$
TB \xrightarrow{1_{TB}} TB
$$
\n
$$
TB
$$
\n
$$
TB \xrightarrow{H_B} TTD
$$
\n
$$
TB
$$
\n
$$
A \xrightarrow{f} TB \xrightarrow{Tg} TTC \xrightarrow{TTh} TTTD \xrightarrow{T\mu_D} TTD
$$
\n
$$
\downarrow^{\mu_C} \qquad \downarrow^{\mu_D} TTD
$$
\n
$$
TC \xrightarrow{Th} TTD \xrightarrow{\mu_D} TD
$$

Proposition 5.6. Assuming that:

- $\mathcal C$ a [category](#page-1-1)
- $\mathbb T$ $\mathbb T$ a [monad](#page-31-3)

Then there is an [adjunction](#page-14-1) $\mathcal{C} \rightleftharpoons$ $\frac{F_{\text{T}}}{G_{\text{T}}}$ $\frac{F_{\text{T}}}{G_{\text{T}}}$ $\frac{F_{\text{T}}}{G_{\text{T}}}$ $\mathcal{C}_{\mathbb{T}}$ inducing the [monad](#page-31-3) \mathbb{T} .

Proof. We define $F_{\mathbb{T}}A = A$ $F_{\mathbb{T}}A = A$ $F_{\mathbb{T}}A = A$ and $F_{\mathbb{T}}(A \stackrel{f}{\to} B) = A \stackrel{f}{\to} B \stackrel{\eta_B}{\to} TB$. $F_{\mathbb{T}}$ preserves identities by definintion, and preserves composition by

We define $G_{\mathbb{T}}A = TA$ $G_{\mathbb{T}}A = TA$ $G_{\mathbb{T}}A = TA$, and $G_{\mathbb{T}}(A \xrightarrow{f} B) = TA \xrightarrow{T} TTB \xrightarrow{\mu_B} TB$. $G_{\mathbb{T}}$ preserves identities by [\(1\),](#page-31-1) and preserves composites by

$$
TA \xrightarrow{Tf} TTB \xrightarrow{TTg} TTTC \xrightarrow{\text{T}\mu_C} TTC
$$

\n
$$
\downarrow^{\mu_B} \qquad \qquad \downarrow^{\mu_C} \qquad \qquad \downarrow^{\mu_C}
$$

\n
$$
TB \xrightarrow{\text{T}g} TTC \xrightarrow{\text{H}c} TC
$$

We verify the [adjunction](#page-14-1) using [Theorem 3.7:](#page-17-1) $G_T F_T(f) = Tf$ $G_T F_T(f) = Tf$ $G_T F_T(f) = Tf$ by [\(1\)](#page-31-1) so $G_T F_T = T$ and we take η as [unit](#page-17-0) of the [adjunction.](#page-14-1)

We define $TA^{\epsilon A}_{\rightarrow}A$ to be $TA \stackrel{1_{TA}}{\rightarrow} TA$. To verify the [naturality square](#page-3-0)

$$
\begin{array}{c}\n T A \xrightarrow{F_{\text{T}} G_{\text{T}} f} T B \\
 \downarrow \varepsilon_A \\
 A \xrightarrow{f} B\n \end{array}
$$

the lower composite is $TA \stackrel{Tf}{\rightarrow} TTB \stackrel{\mu_B}{\rightarrow} TB$ and the upper one is $TA \stackrel{Tf}{\rightarrow} TTB \stackrel{\mu_B}{\rightarrow} TB \stackrel{\mu_B}{\rightarrow} TTB \stackrel{\mu_B}{\rightarrow} TB$, which agree since [\(2\)](#page-31-1) tells us that $\mu_B \eta_{TB} = 1_B$.

The triangular identities become

$$
F_{\mathbb{T}}A \xrightarrow{F_{\mathbb{T}}\eta_A} FGFA \xrightarrow{\varepsilon_{FA}} FA = TA \xrightarrow{\eta_{TA}} TTA \xrightarrow{\eta_{TTA}} TTTA \xrightarrow{\eta_{TA}} TTA
$$

and

$$
GA \xrightarrow{\eta_{GA}} GFGA \xrightarrow{G\epsilon_A} GA = TA \xrightarrow{\eta_{TA}} TTA \xrightarrow{\eta_{TA}} TA
$$

Fin[a](#page-14-1)lly, $G_{\mathbb{T}} \varepsilon_{F_{\mathbb{T}} A} = \mu_A$ $G_{\mathbb{T}} \varepsilon_{F_{\mathbb{T}} A} = \mu_A$ $G_{\mathbb{T}} \varepsilon_{F_{\mathbb{T}} A} = \mu_A$, so $(F_{\mathbb{T}} \dashv G_{\mathbb{T}})$ induces the [monad](#page-31-3) \mathbb{T} .

Lecture 15

Givena [monad](#page-31-3) $\mathbb T$ $\mathbb T$ on $\mathcal C$, we write Adj $(\mathbb T)$ for the [category](#page-1-1) whose objects are [adjunctions](#page-14-1) $(\mathcal C \frac{F}{\epsilon \sigma} \mathcal D)$ inducing \mathbb{T} \mathbb{T} \mathbb{T} , and morphisms $(\mathcal{C} \stackrel{\frac{F}{\leftarrow} \mathcal{D}}{\rightarrow} \mathcal{D}) \rightarrow (\mathcal{C} \stackrel{\frac{F'}{\leftarrow} \mathcal{D}'}{\rightarrow} \mathcal{D}')$ are [functors](#page-2-0) $\mathcal{D} \stackrel{K}{\rightarrow} \mathcal{D}'$ satisfying $KF = F'$ and $G'K = G$.

 \Box

[T](#page-31-3)heorem 5.7. The [Kleisli](#page-33-0) [adjunction](#page-14-1) $(C \rightleftarrows C_{\mathbb{T}})$ is an [initial object](#page-14-2) of [Adj\(](#page-34-0)T), and the [Eilenberg-Moore](#page-32-0) [adjunction](#page-14-1) $(C \rightleftarrows C^{\mathbb{T}}$ $(C \rightleftarrows C^{\mathbb{T}}$ $(C \rightleftarrows C^{\mathbb{T}}$ is [terminal.](#page-14-2)

Proof. Suppose given $(C \stackrel{F}{\leftarrow} \mathcal{D})$ in [Adj\(](#page-34-0)[T](#page-32-0)). We define $K : \mathcal{D} \to C^{\mathbb{T}}$ by $KB = (GB, G\varepsilon_B)$ (an algebra by one of the triangular identities for η and ε , and [naturality](#page-3-0) of ε), $K(B \stackrel{g}{\to} B') = Gg$ (a homomorphism by [naturality](#page-3-0) of ε). K is [functorial](#page-2-0) since G is, $G^{\mathbb{T}}K = G$ $G^{\mathbb{T}}K = G$ $G^{\mathbb{T}}K = G$ is obvious, and $KFA = (GFA, G\varepsilon_{FA}) =$ $(TA, \mu_A) = F^{\mathbb{T}}A.$ $(TA, \mu_A) = F^{\mathbb{T}}A.$ $(TA, \mu_A) = F^{\mathbb{T}}A.$

So K is a morphism of $\text{Adj}(\mathbb{T})$ $\text{Adj}(\mathbb{T})$ $\text{Adj}(\mathbb{T})$.

Suppose $K': \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$ is another such: then we must have $K'B = (GB, \beta_B)$ where $\beta: GFG \to G$ is a [natural transformation](#page-3-0) since $K'g = Gg$ is a homomorphism $K'B \to K'B'$ for all $g : B \to B'$. Also, since $K'F = F^{\mathbb{T}}$ $K'F = F^{\mathbb{T}}$ $K'F = F^{\mathbb{T}}$, we have $\beta_{FA} = \mu_A = G \varepsilon_{FA}$ for all A.

For any B , we have [naturality squares](#page-3-0)

$$
\frac{GFGFGB}{G\varepsilon_{FGB}} \begin{array}{c} GFGB \xrightarrow{GFG\varepsilon_B} GFGB \\ \downarrow \beta_{FGB} \xrightarrow{G\varepsilon_B} \downarrow \beta_B \\ GFGB \xrightarrow{G\varepsilon_B} \neg GB \end{array}
$$

whoseleft edges are equal, and whose top edge is [split](#page-7-2) [epic,](#page-7-1) so we obtain $G\varepsilon_B = \beta_B$ for all B. So $K' = K$.

We define $H: \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ $H: \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ $H: \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ by $HA = FA$ and $H(A \to B) = FA \to FGFB \to FB$. H preserves identities and satisfies $HF_{\mathbb{T}} = F$ $HF_{\mathbb{T}} = F$ $HF_{\mathbb{T}} = F$, by the first triangular identity for η and ε .

H preserves the composite $A \rightarrow B \rightarrow C$ by

$$
FA \xrightarrow{Ff} FGFB \xrightarrow{FGFg} FGFGFC \xrightarrow{\downarrow_{EFG}} FGFC
$$

$$
\downarrow_{\varepsilon_{FB}} Fg \xrightarrow{Fg} FGFC \xrightarrow{\varepsilon_{FC}} FC
$$

$$
FB \xrightarrow{Fg} FGFC \xrightarrow{\varepsilon_{FC}} FC
$$

Also $GHA = GFA = TA = G_{\mathbb{T}}A$ $GHA = GFA = TA = G_{\mathbb{T}}A$ $GHA = GFA = TA = G_{\mathbb{T}}A$ and

$$
GH(A \xrightarrow{f} B) = (TA \xrightarrow{Tf} TTB \xrightarrow{\mu_B} TB) = G_{\mathbb{T}}(A \xrightarrow{f} B).
$$

So H is a morphism of [Adj\(](#page-34-0)[T](#page-31-3)). Note that H is [full](#page-6-0) and [faithful,](#page-6-0) since it sends $A \stackrel{f}{\rightarrow} GFB$ to its tr[a](#page-14-1)spose across $(F \dashv G)$.

If $H': \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ $H': \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ $H': \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ is any morphism of [Adj\(](#page-34-0) \mathbb{T}), we must have $H'A = FA = HA$ for all A, and since $GH' = G_{\mathbb{T}}$ $GH' = G_{\mathbb{T}}$ $GH' = G_{\mathbb{T}}$ and the [adjunctions](#page-14-1) have the same [unit,](#page-17-0) H' must send the transpose $A \xrightarrow{f} B$ of $A \xrightarrow{f} GFB$ to its tr[a](#page-14-1)nspose across $(F \dashv G)$. So $H' = H$. \Box

 $\mathcal{C}_{\mathbb{T}}$ $\mathcal{C}_{\mathbb{T}}$ $\mathcal{C}_{\mathbb{T}}$ has [coproducts](#page-10-0) if C does, but has few other [limits](#page-20-2) or [colimits.](#page-20-2) In contrast, we have:

Proposition 5.8. Assuming that:

• $\mathbb T$ $\mathbb T$ a [monad](#page-31-3) on $\mathcal C$

Then

- (i) The forgetful [functor](#page-2-0) $G^{\mathbb{T}}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ $G^{\mathbb{T}}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ $G^{\mathbb{T}}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ [creates](#page-24-0) all [limits](#page-20-2) which exist in \mathcal{C} .
- (ii) If C has [colimits](#page-20-2) of shape J, then G^T G^T [creates](#page-24-0) colimits of shape J if and only if T preserves them.

Proof.

- (i) Suppose given $D: J \to \mathcal{C}^{\mathbb{T}}$ $D: J \to \mathcal{C}^{\mathbb{T}}$ $D: J \to \mathcal{C}^{\mathbb{T}}$; write $D(j) = (GD(j), \delta_j)$, and let $(L, (\lambda_j : L \to GD(j) | j \in ob J))$ $(L, (\lambda_j : L \to GD(j) | j \in ob J))$ $(L, (\lambda_j : L \to GD(j) | j \in ob J))$ bea [limit](#page-20-2) for GD. The composites $TL \stackrel{T\lambda_j}{\rightarrow} TGD(j) \stackrel{\delta_j}{\rightarrow} GD(j)$ form a [cone](#page-20-2) over GB. So they induce a unique $\lambda: TL \to L$ $\lambda: TL \to L$ $\lambda: TL \to L$. And λ is a T-algebra structure on L, since the identities $\lambda \eta_L = 1_L$ and $\lambda(T\lambda) = \lambda\mu_L$ follow from uniqueness of factorisations through [limits](#page-20-2) and it's the unique lifting of the [limit cone](#page-20-2)in $\mathcal C$ to a [cone](#page-20-2) in $\mathcal C^{\mathbb T}$ $\mathcal C^{\mathbb T}$ $\mathcal C^{\mathbb T}$. The fact that it's a limit cone is straightforward.
- (ii)If $G^{\mathbb{T}}$ $G^{\mathbb{T}}$ $G^{\mathbb{T}}$ [creates](#page-24-0) [colimits](#page-20-2) then it [preserves](#page-24-0) them, but so does $F^{\mathbb{T}}$ since it's a [left adjoint,](#page-14-1) so T preserves them too.

Conversely,given $D: J \to \mathcal{C}^T$ $D: J \to \mathcal{C}^T$ and a [colimit cone](#page-20-2) $(GD(j) \stackrel{\lambda_j}{\to} L | j \in ob J)$ $(GD(j) \stackrel{\lambda_j}{\to} L | j \in ob J)$ $(GD(j) \stackrel{\lambda_j}{\to} L | j \in ob J)$ under GD , we need to knowthat $(TGD(j) \stackrel{T\lambda_j}{\to} TL \mid j \in ob J)$ $(TGD(j) \stackrel{T\lambda_j}{\to} TL \mid j \in ob J)$ $(TGD(j) \stackrel{T\lambda_j}{\to} TL \mid j \in ob J)$ is a [colimit cone](#page-20-2) to obtain $TL \stackrel{\lambda}{\to} L$ (and that TTL is a [colimit](#page-20-2) to verify that λ is a [T](#page-31-3)-algebra structure). Otherwise, the argument is as before. \Box

Given $(C \frac{F}{\epsilon_G} \mathcal{D}), (F \dashv G)$ $(C \frac{F}{\epsilon_G} \mathcal{D}), (F \dashv G)$ $(C \frac{F}{\epsilon_G} \mathcal{D}), (F \dashv G)$, how can we tell when $K : \mathcal{D} \to C^{\mathbb{T}}$ $K : \mathcal{D} \to C^{\mathbb{T}}$ $K : \mathcal{D} \to C^{\mathbb{T}}$ is part of an [equivalence?](#page-5-1)

Note: $H: \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ $H: \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ $H: \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ is an [equivalence](#page-5-1) if and only if F is [essentially surjective.](#page-6-0)

We c[a](#page-14-1)ll $(F \dashv F)$ (or the [functor](#page-2-0) G) *monadic* if $K : \mathcal{D} \to \mathcal{C}^T$ is part of an [equivalence.](#page-5-1)

Lecture 16

Lemma 5.9. Assuming that:

- $\mathcal{C} \xrightarrow[\sigma]{F} \mathcal{D}$ is an [adjunction](#page-14-1) inducing the [monad](#page-31-3) \mathbb{T} \mathbb{T} \mathbb{T} on \mathcal{C}
- •for every $\mathbb T$ $\mathbb T$ algebra (A, α) , the pair $FGFA \frac{F_{\alpha}}{\epsilon_F A} FA$ has a [coequaliser](#page-10-1) in $\mathcal D$

Then $K: \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$ has a [left adjoint](#page-14-1) L.

Proof. Write $FA \stackrel{\lambda_{(A,\alpha)}}{\rightarrow} L(A,\alpha)$ for the [coequaliser.](#page-10-1) For any homomorphism $f : (A,\alpha) \rightarrow (B,\beta)$ the

two left hand squares in

$$
\begin{array}{c}\nFGFA \xrightarrow{F\alpha} FA \xrightarrow{\lambda_{(A,\alpha)}} L(A,\alpha) \\
FGFf \downarrow \qquad \qquad Ff \qquad \qquad \downarrow Lf \\
FGFB \xrightarrow{F\beta} FB \xrightarrow{\lambda_{(B,\beta)}} L(B,\beta)\n\end{array}
$$

commute, so we get a unique Lf making the right hand square commute. As usual, uniqueness implies functoriality of L.

For any $B \in ob \mathcal{D}$ $B \in ob \mathcal{D}$ $B \in ob \mathcal{D}$, morphisms $L(A, \alpha) \to B$ correspond to morphisms $FA \stackrel{f}{\to} B$ satisfying $f(F\alpha) =$ $f\varepsilon_{FA}$ $f\varepsilon_{FA}$ $f\varepsilon_{FA}$. If $\overline{f} : A \to \overline{G}B$ is the transpose of f across $(F \dashv G)$, then $f(F\alpha)$ transposes to $\overline{f}\alpha : \overline{GFA} \to \overline{G}B$, whereas $f \varepsilon_{FA}$ transposes to Gf. But we can write $f = \varepsilon_B(F\overline{f})$ by the proof of [Theorem 3.7,](#page-17-1) so $Gf = (G\varepsilon_B)(GF\overline{f})$. So $f(F\alpha) = f\varepsilon_{FA}$ if and only if

$$
GFA \xrightarrow{GF\overline{f}} GFGB
$$

$$
\downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha} G_{\varepsilon_B}
$$

$$
A \xrightarrow{\overline{f}} GB
$$

commutes, which happens if and only if \overline{f} : $(A, \alpha) \rightarrow KB$ in $\mathcal{C}^{\mathbb{T}}$ $\mathcal{C}^{\mathbb{T}}$ $\mathcal{C}^{\mathbb{T}}$.

Naturality of the bijection follows from that of $f \mapsto \overline{f}$.

Note that since $G\mathbb{T} K = G$ $G\mathbb{T} K = G$ $G\mathbb{T} K = G$, we have $LF^{\mathbb{T}} \cong F$ by [Corollary 3.6,](#page-16-2) and L [preserves](#page-24-0) [coequalisers.](#page-10-1)

Definition 5.10 (Reflexive / split coequaliser diagram)**.**

- (a) We say a parallel pair $A \stackrel{f}{\longrightarrow} B$ is *reflexive* if there exists $r : B \to A$ with $fr = gr = 1_B$. Note that $FGFA \stackrel{F_{\alpha}}{\longrightarrow} FA$ is reflexive, with common right inverse $FA \stackrel{F_{\eta_A}}{\to} FGFA$.
- (b) By a *split coequaliser diagram*, we mean a diagram

$$
A \xrightarrow[\tau]{f} B \xrightarrow[\tau]{h} C
$$

satisfying $hf = hg$, $hs = 1_C$, $gt = 1_B$ and $ft = sh$. If these hold, then h is a [coequaliser](#page-10-1) of (f,g) since if $B \stackrel{k}{\to} D$ satisfies $kf = kg$ then $k = kgt = kft = ksh$, so k factors through h, and the factorisation is unique since h is [\(split\)](#page-7-2) [epic.](#page-7-1) Note that *any* [functor](#page-2-0) [preserves](#page-24-0) split coequalisers.

(c) Given $G: \mathcal{D} \to \mathcal{C}$, we say a pair $A \stackrel{f}{\longrightarrow} B$ in \mathcal{D} is *G-split* if there's a split coequaliser diagram

$$
GA \xrightarrow{\text{Gf}} GB \xrightarrow{\text{h}} C
$$

 \Box

in C. The pair $(F\alpha, \varepsilon_{FA})$ in [Lemma 5.9](#page-36-0) is G-split, since

$$
GFGFA \xrightarrow[G_{\varepsilon_{FA}} GFA \xrightarrow[\eta_{G}]{GFA} GFA \xrightarrow[\eta_{A}]{\alpha} A
$$

is a split coequaliser diagram in \mathcal{C} .

Theorem 5.11 (Precise Monadicity Theorem). A [functor](#page-2-0) $G : \mathcal{D} \to \mathcal{C}$ is [monadic](#page-36-1) if and only if Ghas a [left adjoint](#page-14-1) and [creates](#page-24-0) [coequaliser](#page-10-1) of G[-split](#page-37-0) pairs in \mathcal{D} .

Theorem 5.12. Assuming that:

- $G: \mathcal{D} \to \mathcal{C}$ [preserves](#page-24-0) [reflexive](#page-37-0) [coequalisers](#page-10-1)
- • G has a [left adjoint](#page-14-1)
- G [reflects](#page-24-0) isomorphisms

Then G is [monadic.](#page-36-1)

Proof.

 $(5.11, \Rightarrow)$ $(5.11, \Rightarrow)$ $(5.11, \Rightarrow)$ $(5.11, \Rightarrow)$ Necessity of $F \dashv G$ is obvious. For the other condition, it's enough to show that G^T G^T : $\mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ [creates](#page-24-0) [coequalisers](#page-10-1) of $G^{\mathbb{T}}$ [-split](#page-37-0) pairs. This is a re-run of [Proposition 5.8\(](#page-36-2)ii): if $(A, \alpha) \stackrel{f}{=}$ $\Rightarrow (B, \beta)$ are such that

$$
A \xrightarrow[t]{f} B \xrightarrow[k]{h} C
$$

isa [split coequaliser](#page-37-0) diagram, the [coequaliser](#page-10-1) is preserved by T and by TT , so C acquires a unique algebra structure $TC \stackrel{\gamma}{\rightarrow} C$ making h a homomorphism, and h is a [coequaliser](#page-10-1) in $\mathcal{C}^{\mathbb{T}}$ $\mathcal{C}^{\mathbb{T}}$ $\mathcal{C}^{\mathbb{T}}$.

 $(5.11 \leftarrow$ $(5.11 \leftarrow$ and [5.12\)](#page-38-1) Either set of hypotheses implies that D has the [coequalisers](#page-10-1) needed for [Lemma 5.9,](#page-36-0) soK has a [left adjoint](#page-14-1) L. So we need to show that the [unit](#page-17-0) and [counit](#page-17-0) of $(L+K)$ are isomorphisms.

> The [unit](#page-17-0) $(A, \alpha) \to KL(A, \alpha)$ is the factorisation of $G\lambda_{(A,\alpha)} : GFA \to GL(A, \alpha)$ through the $(G^{\mathbb{T}}\text{-split})$ $(G^{\mathbb{T}}\text{-split})$ $(G^{\mathbb{T}}\text{-split})$ [coequaliser](#page-10-1) $GFA \overset{\alpha}{\to} A$ of $GFGFA \overset{GFA}{\underset{Gex}{\longrightarrow}} GFA$. But either set of hypothesis implies that G [preserves](#page-24-0) the [equaliser](#page-10-1) of $(F\alpha, \varepsilon_{FA})$, so this factorisation is an isomorphism.

> The [counit](#page-17-0) $LKB \to B$ is the factorisation of $FGB \overset{\varepsilon_B}{\to} B$ through the [coequaliser](#page-10-1) of $FGFGB \frac{FG_{\varepsilon_{R}}}{\epsilon_{FGB}} FGB$ $FGFGB \frac{FG_{\varepsilon_{R}}}{\epsilon_{FGB}} FGB$ $FGFGB \frac{FG_{\varepsilon_{R}}}{\epsilon_{FGB}} FGB$. The hypotheses of [Theorem 5.11](#page-38-0) imply that ε_{B} is a [coequaliser](#page-10-1)

of this pair, so the [counit](#page-17-0) is an isomorphism. Those of [Theorem 5.12](#page-38-1) imply that the factorisation is mapped to an isomorphism by G , so it's an isomorphism. \Box

Remark 5.13.

(1) [Reflexive](#page-37-0) [coequalisers](#page-10-1) are [colimits](#page-20-2) of shape J , where J is the [category](#page-1-1)

$$
\begin{array}{c}\n\stackrel{s}{\wedge} & f \\
\stackrel{\frown}{A} & \xrightarrow{f} \\
\downarrow f & g\n\end{array} B
$$

satisfying $fr = gr = 1$, $rf = s$ and $rg = t$.

- (2) All [colimits](#page-20-2) can be constructed from [coproducts](#page-10-0) and [reflexive](#page-37-0) [coequalisers.](#page-10-1) This was proved in [Proposition 4.4:](#page-23-0)the pair $P \frac{f}{q} Q$ appearing in that proof is c[oreflexive](#page-37-0) with common Lecture 17 left inverse $r: Q \to P$ defined by $\pi_j r = \pi_{1_j}$ for all j.
	- (3) If $A \stackrel{f}{\longrightarrow} B$ is [reflexive,](#page-37-0) then in any commutative square

$$
A \xrightarrow{f} B
$$

\n
$$
\downarrow g
$$

\n
$$
B \xrightarrow{k} C
$$

 \boldsymbol{B}

wehave $h = hfr = kgr = k$. So a [pushout](#page-22-0) for

$$
\begin{array}{ccc}\nA & \xrightarrow{f} \\
\downarrow{g} & & \\
B & & \n\end{array}
$$

isa [coequaliser](#page-10-1) for $A \stackrel{f}{\Longrightarrow} B$.

(4) In [Set](#page-1-2),or more generally in a [cartesian closed](#page-14-4) [category,](#page-1-1) if $A_i \stackrel{f_i}{\longrightarrow} B_i \stackrel{h_i}{\rightarrow} C_i$ ($i = 1, 2$) are [reflexive](#page-37-0) [coequalisers,](#page-10-1)then $A_1 \times A_2 \stackrel{f_1 \times f_2}{\longrightarrow} B_1 \times B_2 \stackrel{h_1 \times h_2}{\longrightarrow} C_1 \times C_2$ is also a [coequaliser.](#page-10-1) To see this, consider

$$
A_1 \times A_2 \longrightarrow A_1 \times B_2 \longrightarrow A_1 \times C_2
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
B_1 \times A_2 \longrightarrow B_1 \times B_2 \longrightarrow B_1 \times C_2
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
C_1 \times A_2 \longrightarrow C_1 \times B_2 \longrightarrow C_1 \times C_2
$$

in which all rows and columns are [coequalisers.](#page-10-1) Then the lower right square isa [pushout;](#page-22-0) but if $B_1 \times B_2 \stackrel{k}{\to} D$ [coequalises](#page-10-1) $A_1 \times A_2 \frac{f_1 \times f_2}{g_1 \times g_2} B_1 \times B_2$, then is also [coequalises](#page-10-1) $A_1 \times B_2$ $B_2 \implies B_1 \times B_2$ and $B_1 \times A_2 \implies B_1 \times B_2$, so if factors through the top and left edges of the lower right square, and hence through $B_1 \times B_2 \stackrel{h_1 \times h_2}{\rightarrow} C_1 \times C_2$.

Example 5.14.

(a) The forgetful [functor](#page-2-0) $G_p \rightarrow Set$ $G_p \rightarrow Set$ is [monadic,](#page-36-1) and satisfies the hypotheses of [Theorem 5.12.](#page-38-1) If $G \stackrel{f}{\Longrightarrow} H$ $G \stackrel{f}{\Longrightarrow} H$ $G \stackrel{f}{\Longrightarrow} H$ is a [reflexive](#page-37-0) pair in \mathbf{Gp} \mathbf{Gp} \mathbf{Gp} , with [coequaliser](#page-10-1) $H \stackrel{h}{\to} K$ in \mathbf{Set} \mathbf{Set} \mathbf{Set} , then $G \times G \Longrightarrow H \times H \to$ $K \times K$ $K \times K$ $K \times K$ is a [coequaliser,](#page-10-1) so the multiplication $H \times H \to H$ induces a binary operation $K \times K \to K$, which is the unique group multiplication on K making h a homomorphism, andit makes h into a [coequaliser](#page-10-1) in \mathbf{Gp} \mathbf{Gp} \mathbf{Gp} .

The same argument works for **AbGp**, **[Rng](#page-1-2)**, Lat, DLat,

It doesn't work for [categories](#page-1-1) like CSLat or CLat, but here we can use [Theorem 5.11](#page-38-0) *provided* the forgetful [functor](#page-2-0) hasa [left adjoint.](#page-14-1)

(b) Any [reflection](#page-19-0)is [monadic:](#page-36-1) this can be proved using [Theorem 5.11.](#page-38-0) If $\mathcal{D} \subseteq \mathcal{C}$ is a [reflective](#page-19-0) [subcategory,](#page-19-0) and $A \stackrel{f}{\longrightarrow} B$ is a pair in D for which there exists

$$
A \xrightarrow[\tau]{f} B \xrightarrow[\tau]{h} C
$$

inC satisfying the equaitions of [Definition 5.10\(](#page-37-0)b), then $t \in \text{mor } \mathcal{D}$ $t \in \text{mor } \mathcal{D}$ $t \in \text{mor } \mathcal{D}$ since \mathcal{D} is [full,](#page-6-0) so $ft = sh$ is in \mathcal{D} , but $\mathcal D$ is closed under splittings of idempotents by [Example 4.7\(](#page-25-0)d), so h belongs to it.

(c) Consider the composite [adjunction](#page-14-1)

$$
\mathbf{Set} \xrightarrow[G]{} \mathbf{AbGp} \xrightarrow[I]{} \mathbf{tfAbGp}
$$

where $(L+I)$ is the [a](#page-14-1)djunction of [Example 3.11\(](#page-19-1)b). The two factors are [monadic,](#page-36-1) but the composite isn't since free abelian groups are torsion free, so $GLF \simeq GF$ and its [category](#page-1-1) of algebras is \cong **AbGp.**

(d) The contravariant power-set [functor](#page-2-0) P^* : [Set](#page-1-2)^{[op](#page-2-1)} \rightarrow Set is [monadic,](#page-36-1) and satisfies the hy-potheses of [Theorem 5.12.](#page-38-1) Its [left adjoint](#page-14-1) is $P^* : Set \to Set^{op}$ by [Example 3.2\(](#page-14-3)i), and it [reflects](#page-24-0) isomorphisms by [Example 2.9\(](#page-12-2)a).

Let $E \stackrel{e}{\rightarrow} A \stackrel{f}{\longrightarrow} B$ be a c[oreflexive](#page-37-0) [equaliser](#page-10-1) [diagram](#page-20-1) in **[Set](#page-1-2)**. Then

$$
E \xrightarrow{e} A
$$

\n
$$
\downarrow e
$$

\n
$$
\downarrow f
$$

\n
$$
A \xrightarrow{g} B
$$

isa [pullback](#page-22-0) by Remark $5.13(c)$, so

$$
\begin{array}{c}\nPE \leftarrow & PA \\
\downarrow_{Pe} & \downarrow_{Pf} \\
PA \leftarrow & PB \\
PA \leftarrow & PB\n\end{array}
$$

commutes. But we also have $(P^*e)(Pe) = 1_{PE}$ and $(P^*f)(Pf) = 1_{PB}$ since e and f are injective, so

$$
PA \xrightarrow[\text{Pf}]{P^*g} P^*B \xleftarrow[\text{Pf}]{P^*e} PE
$$

isa [split coequaliser](#page-37-0) [diagram.](#page-20-1)

- (e) The fogetful [functor](#page-2-0) $\textbf{Top} \stackrel{U}{\to} \textbf{Set}$ is not [monadic;](#page-36-1) the [monad](#page-31-3) on \textbf{Set} induced by $(D+U)$ is $(1_{Set}, 1_{1_{Set}}, 1_{1_{Set}})$ $(1_{Set}, 1_{1_{Set}}, 1_{1_{Set}})$ $(1_{Set}, 1_{1_{Set}}, 1_{1_{Set}})$ so its [category](#page-1-1) of algebras is ≅ **Set**.
- (f) The composite [adjunction](#page-14-1)

Set
$$
\xrightarrow[U]{D}
$$
 Top $\xrightarrow[I]{B}$ KHaus

is [monadic.](#page-36-1) We'll prove this using [Theorem 5.11:](#page-38-0) suppose given $X \stackrel{f}{\longrightarrow} Y$ in **KHaus** and a [split coequaliser](#page-37-0)

$$
UX \xrightarrow[\tau]{\frac{Uf}{Ug}}UY \xleftarrow[\tau]{\frac{h}{s}} Z
$$

in [Set](#page-1-2).The quotient topology on Z is the unique topology making h into a [coequaliser](#page-10-1) in **[Top](#page-1-2)**,and it's compact, so h will be a [coequaliser](#page-10-1) in **KHaus** provided Z is Hausdorff. It is also the unique topology that could make h into a morphism of **KHaus**.

But, given an equivalence relation S on a compact Hausdorff space Y , Y/S is Hausdorff if and only if S is closed in $Y \times Y$.

In our case, if $(y_1, y_2) \in S$ (i.e. $h(y_1) = h(y_2)$) then $x_1 = t(y_1)$ and $x = t(y_2)$ satisfy $g(t_1) = y_1, g(x_2) = y_2 \text{ and } f(x_1) = f(x_2).$

Conversely, if we have x_1 and x_2 as above, then $h(y_1) = h(y_2)$, so $S = g \times g(R)$ where $R \subseteq X \times X$ is $\{(x_1, x_2) \mid f(x_1) = f(x_2)\}\)$. But R is closed in $X \times X$ since it's the [equaliser](#page-10-1) of $X \times X \frac{f\pi_1}{f\pi_2}$ $f_{\overline{f_{n2}}} Y$. So R is compact, so S is compact, so S is closed in $Y \times Y$.

Definition 5.15 (Monadic tower). Let $C \frac{F}{\epsilon_G} \mathcal{D}$ be an [adjunction](#page-14-1) where \mathcal{D} has [reflexive](#page-37-0) [co-](#page-10-1)

6 Filtered Colimits

Definition6.1 (Filtered). We say a [category](#page-1-1) C is *filtered* if every finite [diagram](#page-20-1) $D: J \to \mathcal{C}$ hasa [cone](#page-20-2) under it.

Lemma 6.2. C is [filtered](#page-43-1) if and only if:

- (i) $\mathcal C$ is nonempty.
- (ii)Given $A, B \in ob \mathcal{C}$ $A, B \in ob \mathcal{C}$ $A, B \in ob \mathcal{C}$, there exists a [cospan](#page-22-0) $A \to C \leftarrow B$.
- (iii) Given $A \stackrel{f}{\longrightarrow} B$ in C, there exists $B \stackrel{h}{\rightarrow} C$ with $hf = hg$.

Proof.

 \Rightarrow Since each of (i) - (iii) is a special case of [Definition 6.1.](#page-43-1)

 \Leftarrow (i) deals with the empty [diagram.](#page-20-1)

Given $D: J \to \mathcal{C}$ with J finite and non-empty, by repeated use of (ii) we can find A with morphisms $D(j) \to A$ for all j. Then by repeated use of (ii) we can find $A \to B$ [coequalising](#page-10-1)

for each $\alpha \in \text{mor } J$ $\alpha \in \text{mor } J$ $\alpha \in \text{mor } J$.

 \Box

For preorders, we say *directed* instead of [filtered.](#page-43-1)

Definition 6.3 (Has filtered colimits). We say C has filtered colimits if every $D: J \to \mathcal{C}$, where J is [small](#page-1-3) and [filtered,](#page-43-1) has a colimit.

Note that [direct limits](#page-23-1) as in Example $4.3(g)$ are [directed](#page-43-2) [colimits.](#page-20-2)

Lemma 6.4. Assuming that:

- $\mathcal C$ has finite [colimits](#page-20-2)
- $\boldsymbol{\mathcal{C}}$ has [directed](#page-43-2) [colimits](#page-20-2)

Then $\mathcal C$ has all [small](#page-1-3) [colimits.](#page-20-2)

Proof. By [Proposition 4.4\(](#page-23-0)i), enough to show $\mathcal C$ has all [small](#page-1-3) [coproducts.](#page-10-0)

Given a set-indexeud family $(A_j | j \in J)$ of objects, the finite [coproducts](#page-10-0) $\sum_{j \in F} A_j$, for $F \subseteq J$ finite, form the vertices of a diagram of shape $P_f J = \{F \subseteq J \mid F \text{finite}\}\$ whose edges are coprojections. $P_f J$ is [directed,](#page-43-2)and a [colimit](#page-20-2) for this [diagram](#page-20-1) has the universal property of a [coproduct](#page-10-0) $\sum_{j\in J} A_j$. \Box

Suppose given a $D: I \times J \to \mathcal{C}$, where $\mathcal C$ has [limits](#page-20-2) of shape I and [colimits](#page-20-2) of shape J.

Wecan form $L(j) = \lim_{I} (D(\bullet, j) : I \to \mathcal{C})$, by [Example 4.7\(](#page-25-0)e) these are the [vertices](#page-20-1) of a [diagram](#page-20-1) $L: J \to \mathcal{C}$, and we can form colim_J L.

Similarly, the [colimits](#page-20-2) $M(i) = \text{colim}_J D(i, \bullet)$ form a [diagram](#page-20-1) of shape I, and we can form $\lim_I M$. We get an induced morphism $\text{colim}_J L \to \lim_I M$; if this is an isomorphism for all $D: I \times J \to \mathcal{C}$, we say [colimits](#page-20-2) of shape J *commute with* [limits](#page-20-2) of shape I in C.

Equivalently, $\text{colim}_J : [J, \mathcal{C}] \to \mathcal{C}$ $\text{colim}_J : [J, \mathcal{C}] \to \mathcal{C}$ $\text{colim}_J : [J, \mathcal{C}] \to \mathcal{C}$ [preserves](#page-24-0) [limits](#page-20-2) of shape [I,](#page-3-0) or $\lim_I : [I, \mathcal{C}] \to \mathcal{C}$ preserves [colimits](#page-20-2) of shape J.

In [Remark 5.13\(](#page-39-0)d) we saw that [reflexive](#page-37-0) [coequalisers](#page-10-1) commute with finite products in **[Set](#page-1-2)**.

Theorem 6.5. Assuming that:

• J a [small](#page-1-3) [category](#page-1-1)

Then [colimits](#page-20-2) of shape J [commute](#page-44-0) with all finite [limits](#page-20-2) in [Set](#page-1-2) if and only if J is [filtered.](#page-43-1)

Proof.

 \Rightarrow Let $D: I \to J$ be a [diagram](#page-20-1) with I finite. We have a diagram $E: I^{op} \times J \to \mathbf{Set}$ defined by $E(i, j) = J(D(i), j).$

For each i, $(\text{colim}_J E)(i)$ is a singleton since every $D(i) \to j$ is identified with $1_{D(i)}$ in the [colimit,](#page-20-2) so \lim_{I} colim_I E is a singleton.

But elements of $\lim_{I} E(\bullet, j)$ are [cones](#page-20-2) under D with apex j, so if $\text{colim}_J \lim_{I} E$ is nonempty there mustbe such a [cone](#page-20-2) for some i .

 \Leftarrow Suppose given $D: I \times J \rightarrow$ [Set](#page-1-2) where I is finite and J is [filtered.](#page-43-1) In general, the [colimito](#page-20-2)f $E: J \to \mathbf{Set}$ $E: J \to \mathbf{Set}$ $E: J \to \mathbf{Set}$ is the quotient of $\prod_{j \in \text{ob } J} E(j)$ $\prod_{j \in \text{ob } J} E(j)$ $\prod_{j \in \text{ob } J} E(j)$ by the smallest equivalence relation identifying $x \in E(j)$ with $D(\alpha)(x) \in E(j')$ for all $\alpha : j \to j'$ in J. For [filtered](#page-43-1) J, this identifies $x \in E(j)$ with $x' \in E(j')$ if and only if there exists $j \stackrel{\alpha}{\to} j'' \stackrel{\alpha'}{\leftarrow} j'$ with $E(\alpha)(x) = E(\alpha')(x')$, and moreover if $j = j'$ we may assume $\alpha = \alpha'$.

Now, given an element x of \lim_{I} colim_J D, we can write it as $(x_i | i \in ob I)$ $(x_i | i \in ob I)$ $(x_i | i \in ob I)$ where $x_i \in colim J D(i, \bullet)$ is an equivalence class of elements $x_{ij} \in D(i,j)$. If $\alpha : i \to i'$ in I, then $D(\alpha, j)(x_{ij})$ and $x_{i'j'}$ representthe same element of colim_J $D(i', \bullet)$ so by repeated use of [Lemma 6.2\(](#page-43-3)ii) we can choose representatives in $D(i, j_0)$ for some fixed j_0 , and by repeated use of [Lemma 6.2\(](#page-43-3)iii) we can assume that these representatives define an element of $\lim_{I} D(\bullet, j_0)$. This defines an element of colim_J $\lim_{I} D$ mapping to the given element of \lim_{I} colim_J D.

The proof of injectivity is similar: if two elements x, y of colim_J lim_I D have the same image in $\lim_I \text{colim}_I D$ we can choose representatives x_j, y_j in $\lim_I D(\bullet, j)$ and then find $j \to j'$ so that each of the components x_{ij} and y_{ij} map to the same element of $D(i, j')$ under $j \to j'$. So $x = y$ in colim_I lim_I D. \Box

Lecture 19

Corollary6.6. For a [category](#page-1-1) C of finitary algebras as in [Example 5.14\(](#page-40-0)a),

- (i) The forgetful [functor](#page-2-0) $U : \mathcal{C} \to \mathbf{Set}$ $U : \mathcal{C} \to \mathbf{Set}$ $U : \mathcal{C} \to \mathbf{Set}$ [creates](#page-24-0) [filtered](#page-43-1) [colimits.](#page-20-2)
- (ii) [Filtered](#page-43-1) [colimits](#page-20-2) [commute](#page-44-0) with finite [limits](#page-20-2) in \mathcal{C} .

Proof.

- (i) This is just like [Example 5.14\(](#page-40-0)a):Given a [filtered](#page-43-1) [diagram](#page-20-1) $D: J \to \mathcal{C}$ and a [colimit](#page-20-2) for UD with apex L, then L^n is the [colimit](#page-20-2) of UD^n for all n, so each n-ary operation on the $D(j)$'s induces an n-ary operation on L, and L also inherits all the equations defining \mathcal{C} , so there's a unique lifting of the [colimit cone](#page-20-2) under UD toa [colimit cone](#page-20-2) for D.
- (ii) Follows from (i) and [Theorem 6.5,](#page-44-1) since U also [creates](#page-24-0) finite [limits](#page-20-2) (and [reflects](#page-24-0) isomorphisms).

 \Box

Similar results hold for [categories](#page-1-1) such as [Cat](#page-2-0).

Example 6.7. Consider the [diagram](#page-20-1)

$$
\cdots \xrightarrow{\quad s \quad} \mathbb{N} \xrightarrow{\quad s \quad} \mathbb{N} \xrightarrow{\quad s \quad} \mathbb{N}
$$

$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

$$
\cdots \xrightarrow{\quad 1 \quad} 1 \xrightarrow{\quad 1 \quad} 1 \xrightarrow{\quad 1 \quad} 1 \xrightarrow{\quad 1 \quad}
$$

of shape $\mathbb{N}^{\text{op}} \times 2$ $\mathbb{N}^{\text{op}} \times 2$ $\mathbb{N}^{\text{op}} \times 2$ in **[Set](#page-1-2)**. The [inverse limit](#page-23-1) of the top row is \emptyset , but that of the bottom row is 1. So $\lim_{N\to\infty}$ [N^{[op](#page-2-1)}, [Set](#page-3-0)] \to Set doesn't preserve [epimorphisms;](#page-7-1) equivalently colim_N : [N, Set^{op}] \to Set^{op} Set^{op} Set^{op} Set^{op} doesn't preserve [monomorphisms.](#page-7-1) Thus by [Remark 4.8,](#page-25-1) [directed](#page-43-2) [colimits](#page-20-2) don't [commute](#page-44-0) with [pullbacks](#page-22-0) in Set^{op} Set^{op} Set^{op} Set^{op} .

Givena [functor](#page-2-0) $F : \mathcal{C} \to \mathbf{Set}$ $F : \mathcal{C} \to \mathbf{Set}$ $F : \mathcal{C} \to \mathbf{Set}$, the *category of elements* of F is $(1 \downarrow F)$: its objects are pairs (A, x) with $x \in FA$ and morphisms $(A, x) \to (B, y)$ are morphisms $f : A \to B$ such that $(Ff)(x) = y$.

Proposition 6.8. Assuming that:

- $\mathcal C$ a [small](#page-1-3) [category](#page-1-1)
- $\mathcal C$ has finite [limits](#page-20-2)
- $F: \mathcal{C} \to \mathbf{Set}$ $F: \mathcal{C} \to \mathbf{Set}$ $F: \mathcal{C} \to \mathbf{Set}$ a [functor](#page-2-0)

Then the following are equivalent:

- (i) F [preserves](#page-24-0) finite [limits.](#page-20-2)
- (ii) $(1 \downarrow F)$ is c[ofiltered.](#page-43-1)
- (iii) F is expresible as a [filtered](#page-43-1) [colimit](#page-20-2) of [representable](#page-9-0) [functors.](#page-2-0)

Proof.

- (i) ⇒ (ii) By [Lemma 4.10,](#page-26-0) $(1 \downarrow F)$ has finite [limits](#page-20-2) so $(1 \downarrow F)$ ^{[op](#page-2-1)} is [filtered.](#page-43-1)
- (ii) \Rightarrow (iii) Consider the [diagram](#page-20-1) $(1 \downarrow F)^{\rm op} \stackrel{U}{\rightarrow} \mathcal{C}^{\rm op} \stackrel{Y}{\rightarrow} [\mathcal{C}, \mathbf{Set}]$ $(1 \downarrow F)^{\rm op} \stackrel{U}{\rightarrow} \mathcal{C}^{\rm op} \stackrel{Y}{\rightarrow} [\mathcal{C}, \mathbf{Set}]$ $(1 \downarrow F)^{\rm op} \stackrel{U}{\rightarrow} \mathcal{C}^{\rm op} \stackrel{Y}{\rightarrow} [\mathcal{C}, \mathbf{Set}]$ $(1 \downarrow F)^{\rm op} \stackrel{U}{\rightarrow} \mathcal{C}^{\rm op} \stackrel{Y}{\rightarrow} [\mathcal{C}, \mathbf{Set}]$ $(1 \downarrow F)^{\rm op} \stackrel{U}{\rightarrow} \mathcal{C}^{\rm op} \stackrel{Y}{\rightarrow} [\mathcal{C}, \mathbf{Set}]$ where U is the forgetful [func](#page-2-0)[tor](#page-2-0) and Y is the [Yoneda embedding.](#page-9-1) A [cone](#page-20-2) under this [diagram](#page-20-1) (with apex G , say) yields a family of morphisms $\mathcal{C}(A, \bullet) \stackrel{\lambda_{(A,x)}}{\rightarrow} G$ for each $x \in FA$, subject to compatibility conditions which say that $(Gf)\Phi(\lambda_{(A,x)}) = \Phi(\lambda_{(B,y)})$ for every $f: (A, x) \to (B, y)$ $f: (A, x) \to (B, y)$ $f: (A, x) \to (B, y)$ in $(1 \downarrow F)$, i.e. such that $x \mapsto \Phi(\lambda_{(A,x)})$ is a [natural transfor](#page-3-0)[mation](#page-3-0) $F \to G$. So the [cone](#page-20-2) $(\mathcal{C}(A, \bullet) \stackrel{\Psi(x)}{\to} F \mid (A, x) \in ob(1 \downarrow F))$ $(\mathcal{C}(A, \bullet) \stackrel{\Psi(x)}{\to} F \mid (A, x) \in ob(1 \downarrow F))$ $(\mathcal{C}(A, \bullet) \stackrel{\Psi(x)}{\to} F \mid (A, x) \in ob(1 \downarrow F))$ has the universal property ofa [colimit](#page-20-2) for the [diagram.](#page-20-1)
- (iii) \Rightarrow (i) [Functors](#page-2-0) of the form $C(A, \bullet)$ preserve any [limits](#page-20-2) which exist, so this follows from [Theorem 6.5](#page-44-1) plus the fact that [colimits](#page-20-2) in $[\mathcal{C}, \mathbf{Set}]$ $[\mathcal{C}, \mathbf{Set}]$ $[\mathcal{C}, \mathbf{Set}]$ are computed pointwise. \Box

Givena [category](#page-1-1) C with [filtered](#page-43-1) [colimits,](#page-20-2) we say $F : \mathcal{C} \to \mathcal{D}$ is *finitary* if it [preserves](#page-24-0) filtered [colimits.](#page-20-2) If $C =$ [Set](#page-1-2), then a finitary F is determined by its restriction to Set_f, since any set is the [directed](#page-43-2) union of its finite subsets.

In fact the restriction [functor](#page-2-0) $[\mathbf{Set}, \mathcal{D}] \to [\mathbf{Set}_f, \mathcal{D}]$ $[\mathbf{Set}, \mathcal{D}] \to [\mathbf{Set}_f, \mathcal{D}]$ $[\mathbf{Set}, \mathcal{D}] \to [\mathbf{Set}_f, \mathcal{D}]$ has a [left adjoint](#page-14-1) (the *left Kan extension* [functor\)](#page-2-0) and the finitary [functors](#page-2-0) are those in the image of this [left adjoint](#page-14-1) (up to isomorphism).

Fora [category](#page-1-1) C as in [Example 5.14\(](#page-40-0)a) or [Corollary 6.6,](#page-45-0) the corresponding [monad](#page-31-3) $\mathbb T$ $\mathbb T$ on **[Set](#page-1-2)** is finitary. From now on, \textbf{Set}_f \textbf{Set}_f \textbf{Set}_f will denote the [skeleton](#page-7-0) of the [category](#page-1-1) of finite sets whose objects are the sets $[n] = \{1, 2, \ldots, n\}.$

Definition6.9 (Lawvere theory). By a *Lawvere theory*, we mean a [small](#page-1-3) [category](#page-1-1) T together witha [functor](#page-2-0) $\mathbf{Set}_f \to \mathcal{T}$ $\mathbf{Set}_f \to \mathcal{T}$ $\mathbf{Set}_f \to \mathcal{T}$ which is bijective on objects and [preserves](#page-24-0) finite [coproducts.](#page-10-0) A *model*of a Lawvere theory $\mathcal T$ in any [category](#page-1-1) $\mathcal C$ with finite products is a [functor](#page-2-0) $M: \mathcal T^{\rm op} \to \mathcal C$ $M: \mathcal T^{\rm op} \to \mathcal C$ $M: \mathcal T^{\rm op} \to \mathcal C$ preserving finite [products.](#page-10-0)

Forexample, if $\mathbb T$ $\mathbb T$ is a [monad](#page-31-3) on **[Set](#page-1-2)**, the [full](#page-6-0) su[bcategory](#page-1-1) of $\mathbf{Set}_{\mathbb T}$ whose objects are the sets [n] is a [Lawvere theory.](#page-47-1)

Lemma 6.10. Assuming that:

• $\mathcal T$ a [Lawvere theory](#page-47-1)

Then the [category](#page-1-1) of $\mathcal T$ [-models](#page-47-1) in [Set](#page-1-2) is [\(equivalent](#page-5-1) to) a finitary algebra category in the sense of [Example 5.14\(](#page-40-0)a).

*Proof.*Given a [model](#page-47-1) $M : \mathcal{T}^{\text{op}} \to \mathbf{Set}$ $M : \mathcal{T}^{\text{op}} \to \mathbf{Set}$, we have $M[n] \cong M[1]^n$ for all n. Also, any morphism $M[1]^n \to M[1]^p$ induced by a morphism $[p] \to [n]$ in T is determined by its composites with the projections $M[1]^p \to M[1]$, so specifying M on morphisms is determined by its effect on morphisms with domain [1].

So,given a set A, specifying a [model](#page-47-1) M with $M[1] = A$ is equivalent to specifying operations α_A : $A^n \to A$ for each $\alpha : [1] \to [n]$ in T, subject to $(v_i)_A(a_1, \ldots, a_n) = a_i$ whenever $v_i : [1] \to [n]$ is the i-th coprojection, and

commutes whenever

 $[1] \longrightarrow [n]$ $[p]$ α σ $(\beta_1,...,\beta_n)$

commutes.

Lecture 20

Note that the characterisation of \mathcal{T} [-models](#page-47-1) in any [category](#page-1-1) with finite products. Note also that the equationsof [Lemma 6.10](#page-47-2) allow us to reduce any compound operation $\alpha(\beta_1(x \cdots), \beta_2(x \cdots), \ldots, \beta_n(x \cdots))$ to a single operation γ .

 \Box

Theorem 6.11. Assuming that:

• $\mathcal C$ a [category](#page-1-1)

Then the following are equivalent:

- (i) C is [equivalent](#page-5-1) to a finitry algebraic [category](#page-1-1) in the sense of [Definition 5.15\(](#page-41-0)a).
- (ii) $\mathcal C$ is [equivalent](#page-5-1) to the [category](#page-1-1) of **[Set](#page-1-2)**[-models](#page-47-1) of a [Lawvere theory.](#page-47-1)
- (iii) $C \simeq \mathbf{Set}^{\mathbb{T}}$ for a finitary [monad](#page-31-3) \mathbb{T} on \mathbf{Set} .

Proof.

(ii) \Rightarrow (i) Let T be the [full](#page-6-0) su[bcategory](#page-1-1) of C on the free algebras $F[n]$, for $n \in \mathbb{N}$. Then T isa [Lawvere theory,](#page-47-1) and for every object A of C, the [functor](#page-2-0) $\mathcal{C}(\bullet, A)$ restricted to T [preserves](#page-24-0) finite [products,](#page-10-0)so it's a [model](#page-47-1) of \mathcal{T} . This defines a [functor](#page-2-0) $\mathcal{T}-\textbf{Mod}(\textbf{Set}) \stackrel{Y}{\leftarrow}$ $\mathcal{T}-\textbf{Mod}(\textbf{Set}) \stackrel{Y}{\leftarrow}$ $\mathcal{T}-\textbf{Mod}(\textbf{Set}) \stackrel{Y}{\leftarrow}$ [Set](#page-1-2)^{[T](#page-31-3)}; but $\mathcal{T} - \text{Mod}(Set) \simeq \textbf{Set}^{T'}$ for some finitary [monad](#page-31-3) T' on Set, so we get a [functor](#page-2-0) $\mathbf{Set}^{\mathbb{T}} \stackrel{Y}{\to} \mathbf{Set}^{\mathbb{T}'}$ which is the identity on underlying sets.

> Inthis situation, Y is induced by a *morphism of monads* $\mathbb{T}' \to \mathbb{T}$ $\mathbb{T}' \to \mathbb{T}$ $\mathbb{T}' \to \mathbb{T}$, i.e. a [natural](#page-3-0) [transformation](#page-3-0) $\theta: T' \to T$ commuting with the [units](#page-17-0) and multiplications. (Clearly, sucha θ induces a [functor](#page-2-0) $\mathbf{Set}^{\mathbb{T}} \to \mathbf{Set}^{\mathbb{T}'}$ sending (A, α) to $(A, \alpha \theta_A)$.

> But we know $\theta_{[n]}$ is bijective for all n, since elements of the free algebras on $[n]$ are just morphisms $[1] \rightarrow [n]$ in T. But both [functors](#page-2-0) are finitary, so θ_A is bijective for all A, i.e. it's an isomorphism of [monads.](#page-31-3) \Box

For a general [monad](#page-31-3) $\mathbb T$ $\mathbb T$ on **[Set](#page-1-2)**, this construction produces a finitary monad $\mathbb T'$ which is the c[oreflection](#page-19-0) of [T](#page-31-3) in the [category](#page-1-1) of finitary [monads.](#page-31-3)

For example:

- For $\mathbb{T} =$ $\mathbb{T} =$ $\mathbb{T} =$ (double power-set), we obtain $\mathbb{T}' =$ {Boolean algebras}.
- For $\mathbb{T} =$ $\mathbb{T} =$ $\mathbb{T} =$ Stone-Čech, we obtain the trivial [monad](#page-31-3) $(1_{\text{Set}}, 1_{1_{\text{Set}}}, 1_{1_{\text{Set}}})$ $(1_{\text{Set}}, 1_{1_{\text{Set}}}, 1_{1_{\text{Set}}})$ $(1_{\text{Set}}, 1_{1_{\text{Set}}}, 1_{1_{\text{Set}}})$.

7 Regular Categories

Definition7.1 (Image, cover). We say a [category](#page-1-1) C has images if, for every $A \stackrel{f}{\rightarrow} B$ in C, there exists a least $m : B' \rightarrow B$ in [Sub\(](#page-28-0)B) through which f factors. We call m the *image* of f, and we say f is a *cover* if its image is 1_B .

We write $A \stackrel{f}{\rightarrow} B$ to indicate that f is a cover.

Lemma7.2. Any strong [epimorphism](#page-7-1) is a [cover.](#page-49-1) The converse holds if C has [equalisers](#page-10-1) and [pullbacks.](#page-22-0)

Proof. If f is strong [epic,](#page-7-1) applying the definition to commutative squares of the form

$$
A \xrightarrow{g} B'
$$

\n
$$
\downarrow f
$$

\n
$$
\searrow^{A} \downarrow m
$$

\n
$$
B \xrightarrow{f_{B}} B
$$

showsthat f is a [cover.](#page-49-1)

Forthe converse, a [cover](#page-49-1) $A \stackrel{f}{\to} B$ is [epic](#page-7-1) since it can't factor through the [equaliser](#page-10-1) of any $B \stackrel{g}{\longrightarrow} C$ with $g \neq h$. To verify the other condition, suppose given

$$
A \xrightarrow{g} C
$$

\n
$$
\downarrow f
$$

\n
$$
B \xrightarrow{A} D
$$

\n
$$
B \xrightarrow{h} D
$$

then the [pullback](#page-22-0) of m along h is [monic](#page-7-1) by [Lemma 4.15,](#page-28-1) and f factors through it, so it's an isomorphism. So we get $B \to C$ by composing with the top edge of the [pullback](#page-22-0) square. \Box

Here, if C has [images,](#page-49-1)image facorisation defines a [functor](#page-2-0) $[2, C] \rightarrow [3, C]$ $[2, C] \rightarrow [3, C]$ $[2, C] \rightarrow [3, C]$ $[2, C] \rightarrow [3, C]$: given

$$
A \xrightarrow{f} B
$$

\n
$$
\downarrow g \qquad \downarrow h
$$

\n
$$
C \xrightarrow{k} D
$$

if we form the image factorisations

$$
\begin{array}{ccc}\nA & \longrightarrow & I \rightarrow & B \\
\downarrow & & \downarrow & & \downarrow \\
C & \longrightarrow & J \rightarrow & D\n\end{array}
$$

we get a unique $I \rightarrow J$ making both squares commute.

Definition 7.3 (Regular category). We say $\mathcal C$ is *regular* if it has finite [limits](#page-20-2) and [images,](#page-49-1) and image factorisations are stable under [pullback,](#page-22-0) i.e. if the left hand square above isa [pullback](#page-22-0) then so are both right hand squares. (This is equivalent to saying that [covers](#page-49-1) are stable under [pullback\)](#page-22-0).

Example 7.4.

- (a) [Set](#page-1-2) is [regular](#page-50-0) andc[oregular:](#page-50-0) all [monomorphisms](#page-7-1) and [epimorphisms](#page-7-1) are strong, and so the two factorisations coincide and [epimorphisms](#page-7-1) (respectively [monomorphisms\)](#page-7-1) are stable under [pullback](#page-22-0) (respectively [pushout\)](#page-22-0).
- (b) If C is [regular,](#page-50-0) so is any $[D, C]$ $[D, C]$ $[D, C]$ with [images](#page-49-1) constructed pointwise (they're stable under [pushout](#page-22-0) since [pullbacks](#page-22-0) are also constructed pointwise).
- (c) If C is [regular,](#page-50-0) then so \mathcal{C}^T \mathcal{C}^T for any [monad](#page-31-3) T whose underlying [functor](#page-2-0) T [preserves](#page-24-0) [covers.](#page-49-1) If $f: (A, \alpha) \to (B, \beta)$ is a morphism of $C^{\mathbb{T}}$ $C^{\mathbb{T}}$ $C^{\mathbb{T}}$ and $A \to I \to B$ is the image factorisation of f in \mathcal{C} , then in

we get a unique ι making both squares commute, making (I, ι) into a [T](#page-31-3)-algebra, and it's the image of \tilde{f} in $\mathcal{C}^{\mathbb{T}}$ $\mathcal{C}^{\mathbb{T}}$ $\mathcal{C}^{\mathbb{T}}$.

Lecture 21 \parallel In particular, any [category](#page-1-1) [monadic](#page-36-1) over **Set** is [regular.](#page-50-0)

- (d) If C is a preorder, every morphism is its own [image,](#page-49-1) and [covers](#page-49-1) are isomorphisms. So C is [regular](#page-50-0) if and only if it has finite meets.
- (e)**[Top](#page-1-2)** has [images](#page-49-1) and c[oimages:](#page-49-1) given $X \stackrel{f}{\to} Y$, its [image](#page-49-1) (respectively c[oimage\)](#page-49-1) is its set-theoretic image topologised as a quotient of X (respectively subspace of Y). [Top](#page-1-2) isn't [regular,](#page-50-0) but it isc[oregular.](#page-50-0)

Proposition 7.5. Assuming that:

• $\mathcal C$ a [regular](#page-50-0)

Then [covers](#page-49-1) coincide with [regular](#page-50-0) [epimorphisms.](#page-7-1)

Proof.

 \Leftarrow [Regular](#page-10-1) [epimorphism](#page-7-1) implies strong epimorphism by Exercise 214.

 \Rightarrow Suppose $A \xrightarrow{f} B$ is a [cover;](#page-49-1) let $R \xrightarrow{a} A$ be its kernel-pair, i.e. the [pullback](#page-22-0) of

$$
A \xrightarrow{f} B
$$
\n
$$
A \xrightarrow{f} B
$$

Suppose given $g: A \to C$ with $ga = gb$; form the [image](#page-49-1) $A \xrightarrow{e}^{\{h,k\}} B \times C$ of $A \xrightarrow{(f,g)} B \times C$. We'll showh is an isomorphism, so that kh^{-1} is a factorisation of g through f. h is a [cover](#page-49-1) since $he = f$ is, so we need to prove h is [monic.](#page-7-1)

Let $D \stackrel{\iota}{\longrightarrow} I$ such that $hl = hm$; form the [pullback](#page-22-0)

$$
P \xrightarrow{\quad p \quad D} D
$$

$$
\downarrow (q,r) \qquad \qquad \downarrow (e,m)
$$

$$
A \times A \xrightarrow{e \times e} I \times I
$$

 $e \times e$ $e \times e$ $e \times e$ factors as $A \times A \stackrel{1 \times e}{\rightarrow} A \times I \stackrel{e \times 1}{\rightarrow} I \times I$, so $e \times e$ is a [cover,](#page-49-1) and p is a [cover.](#page-49-1)

Now $fq = heq = hlp = hm$ = $her = fr$ so (q, r) factors through (a, b) . But $(h, k)ea = (f, g)a$ $(f, g)b = (h, k)eb$ and (h, k) is [monic,](#page-7-1) so $ea = eb$, so $eq = er$, i.e. $lp = mp$. Also p is [epic,](#page-7-1) so $l = m$. \Box

Bya *relation* $A \rightarrow B$ in a [category](#page-1-1) C with finite [products,](#page-10-0) we mean an isomorphism class of [subobjects](#page-28-0) $R \rightarrowtail A \times B$.

If C has [images,](#page-49-1) we define the composite of $A \overset{R}{\leftrightarrow} B \overset{S}{\leftrightarrow} C$ by forming the [pullback](#page-22-0)

$$
\begin{array}{ccc}\nP & \xrightarrow{q} & S & \xrightarrow{d} & C \\
\downarrow{p} & & \downarrow{c} & \\
R & \xrightarrow{b} & B & \\
\downarrow{a} & & & \\
A\n\end{array}
$$

forming the [image](#page-49-1) of $(ap, dq): P \to A \times C$.

This is well-defined up to isomorphism and has the $A \stackrel{(1_A,1_A)}{\rightarrow} A \times A$ as 2-sided identities.

Lemma 7.6. Composition of [relations](#page-51-0) in C is associative if and only if C is [regular.](#page-50-0)

Proof.

 \Rightarrow Suppose given $A \stackrel{f}{\rightarrow} B \stackrel{e}{\leftarrow} C$. Consider the [relations](#page-51-0)

Composing the right hand pair first, we get

and thus we get

Composing the left hand pair first, we begin by forming the [pullback](#page-22-0)

and we endup with the [image](#page-49-1)of $(p, !_P) : P \to A \times 1$; so p must be a [cover.](#page-49-1)

 \Leftarrow Suppose given [relations](#page-51-0) $A \stackrel{R}{\leftrightarrow} B \stackrel{S}{\leftrightarrow} C \stackrel{T}{\leftrightarrow} D$. If we form the [pullbacks](#page-22-0)

then both $T \circ (S \circ R)$ and $(T \circ S) \circ R$ are the [image](#page-49-1) of $U \to A \times D$.

 \Box

We write $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ for the [category](#page-1-1) whose objects are those of \mathcal{C} and whose morphisms are [relations.](#page-51-0) Note that [Rel](#page-52-0)([Set](#page-1-2)) is just [Rel](#page-1-2) as defined in [Example 1.3\(](#page-1-4)e).

Wehave a [faithful](#page-6-0) [functor](#page-2-0) $C \to \text{Rel}(\mathcal{C})$ $C \to \text{Rel}(\mathcal{C})$ $C \to \text{Rel}(\mathcal{C})$ which is the identity on objects and sends $A \stackrel{f}{\to} B$ to $A \stackrel{(1,f)}{\to} A \times B$ (for [faithfuln](#page-6-0)ess, see Exercise 4.22(i)). We write f_{\bullet} for $(1_A, f)$.

Note that there's an isomporphism $\text{Rel}(\mathcal{C}) \to \text{Rel}(\mathcal{C}^{\text{op}})$ which is the identity on objects and sends $R \stackrel{(a,b)}{\rightarrow} A \times B$ to $R \stackrel{(b,a)}{\rightarrow} B \times A$; we denote this by R° , and write f^{\bullet} for $(f_{\bullet})^{\circ}$.

Also, $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ is enriched over **Poset** (provided $\text{Rel}(\mathcal{C})$ is [locally small,](#page-8-1) i.e. \mathcal{C} is [well-powered\)](#page-28-0), i.e. each $\text{Rel}(\mathcal{C})(A, B)$ $\text{Rel}(\mathcal{C})(A, B)$ $\text{Rel}(\mathcal{C})(A, B)$ has a partial order which is preserved by composition.

We say $A \stackrel{R}{\leftrightarrow} B$ is *left adjoint* to $B \stackrel{S}{\leftrightarrow} A$ if $1_A \leq S \circ R$ and $R \circ S \leq 1_B$.

Proposition 7.7. $A \overset{R}{\leftrightarrow} B$ is a left adjoint in $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ if and only if it is of the form f_{\bullet} .

Proof.

 \Leftarrow \Leftarrow \Leftarrow We show $(f_{\bullet} \dashv f^{\bullet})$: the composite $f^{\bullet}f_{\bullet}$ is just the kernel-pair $R \stackrel{(a,b)}{\rightarrow} A \times A$ of f, and $A \stackrel{(1_A,1_A)}{\rightarrow} A \times A$ factors through it. Also $f_{\bullet} f^{\bullet}$ is the [image](#page-49-1) of

$$
A \xrightarrow{(f,f)} B \times B
$$

\n
$$
\downarrow f
$$

\n
$$
(1_B,1_B)B
$$

so it contains $(1_B, 1_B)$.

 \Rightarrow Conversely, suppose $R \stackrel{(a,b)}{\rightarrow} A \times B$ has a [right adjoint](#page-14-1) $R' \stackrel{(b',a')}{\rightarrow} B \times A$. In forming $R' \circ R$, we take the [pullback](#page-22-0)

$$
\begin{array}{ccc}\nP & \xrightarrow{p'} & R' \\
\downarrow p & & \downarrow b' \\
R & \xrightarrow{b} & B\n\end{array}
$$

So the [image](#page-49-1)of $(ap, a'p')$ contains $A \stackrel{(1_A,1_A)}{\rightarrow} A \times A$, so ap factors as a [cover](#page-49-1) followed by a [split](#page-7-2) [epimorphism,](#page-7-1) so a isa [cover.](#page-49-1)

Now, in the [pullback](#page-22-0)

$$
\begin{array}{ccc}\nQ & \xrightarrow{q} & R' \\
\downarrow^{q} & & \downarrow^{a'} \\
R & \xrightarrow{a} & A\n\end{array}
$$

q and q' are [covers,](#page-49-1) but the [image](#page-49-1) of $(bq, b'q)$ is contained in $(1_B, 1_B)$ so $bq = b'q'$. But $aq = a'q'$, so $R' = R^{\circ}$, $a = a'$, $b = b'$ and $q = q'$. So a is [monic,](#page-7-1) and hence an isomorphism, so $R = (ba^{-1})$. Lecture 22

P. Freyd developed a theory of *allegories* which have the structure of [categories](#page-1-1) of [relations](#page-51-0) and axiomatised those allegories A for which the su[bcategory](#page-1-1) A_{la} is [regular.](#page-10-1)

Ina [regular](#page-10-1) [category](#page-1-1) C, we say a [relation](#page-51-0) $R : A \rightarrow A$ is *reflexive* if $1_A \leq R$, *symmetric* if $R^\circ = R$, and *transitive* if $R \circ R \leq R$. R is an *equivalence relation* if it has all three properties. For any $A \stackrel{f}{\to} B$ in C, the kernel-pair $R \stackrel{(a,b)}{\rightarrow} A \times A$ of f is an [equivalence relation.](#page-54-0) We say an [equivalence relation](#page-54-0) R is *effective* if it occurs as a kernel-pair, and C is *effective regular* if all [equivalence relations](#page-54-0) are effective.

tfAbGp is [regular](#page-50-0) but not [effective regular:](#page-54-0) $\{(m,n) \in \mathbb{Z} \times \mathbb{Z} \mid m \equiv n \pmod{2}\}$ is a non[-effective](#page-54-0) [equivalence relation](#page-54-0) on Z.

Note that an [equivalence relation](#page-54-0) is idempotent in $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$, and if A is an [allegory](#page-54-1) and E is a class of [symmetric](#page-54-0) idempotents in A then $\mathcal{A}[\mathcal{E}]$ (as defined in Exercise 1.18) is an [allegory;](#page-54-1) and if A is $\mathbf{Rel}(\mathcal{C})$ $\mathbf{Rel}(\mathcal{C})$ $\mathbf{Rel}(\mathcal{C})$ fora [regular](#page-10-1) [category](#page-1-1) \mathcal{C} , then:

Proposition 7.8. Assuming that:

- $\mathcal C$ a [regular](#page-10-1) [category](#page-1-1)
- $\mathcal E$ is the class of [equivalence relations](#page-54-0) in $\mathcal C$

Then $\mathcal{C}_{\text{eff}} = (\text{Rel}(\mathcal{C})[\check{\mathcal{E}}])_{la}$ $\mathcal{C}_{\text{eff}} = (\text{Rel}(\mathcal{C})[\check{\mathcal{E}}])_{la}$ $\mathcal{C}_{\text{eff}} = (\text{Rel}(\mathcal{C})[\check{\mathcal{E}}])_{la}$ is [effective regular,](#page-54-0) and the embedding $\text{Rel}(\mathcal{C}) \to \text{Rel}(\mathcal{C})[\check{\mathcal{E}}]$ restricts toa [full](#page-6-0) and [faithful](#page-6-0) [regular](#page-10-1) [functor](#page-2-0) $C \to C_{\text{eff}}$ which is universal among regular [functors](#page-2-0) $C \to \mathcal{D}$ where D is [effective regular.](#page-54-0)

Note that if C is [effective regular,](#page-54-0) its [equivalence relations](#page-54-0) are split idempotents in $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$ $\text{Rel}(\mathcal{C})$: if $A \stackrel{R}{\leftrightarrow} A$ is the kernel-pair of $A \stackrel{f}{\rightarrow} B$ then it splits as $f^{\bullet} f_{\bullet}$ $f^{\bullet} f_{\bullet}$ $f^{\bullet} f_{\bullet}$ (as we saw for $C =$ [Set](#page-1-2) in Exercise 1.19).

Definition7.9 (Topos). A *topos* is a [regular](#page-50-0) [category](#page-1-1) \mathcal{E} for which the embedding $\mathcal{E} \to \text{Rel}(\mathcal{E})$ $\mathcal{E} \to \text{Rel}(\mathcal{E})$ $\mathcal{E} \to \text{Rel}(\mathcal{E})$ sendingf to f_{\bullet} has a [right adjoint.](#page-14-1) We write the effect of the [right adjoint](#page-14-1) on objects by $A \mapsto PA$, and the [unit](#page-17-0) $A \to PA$ as $\{\}_A$, and the [counit](#page-17-0) $PA \leftrightarrow A$ as $\exists_A \rightarrow PA \times A$.

In [Set](#page-1-2), PA is the power-set of A, the unit is the mapping $a \mapsto \{a\}$ of [Example 1.7\(](#page-4-0)c), and $\exists A =$ $\{(A', a) \mid a \in A'\} \subseteq PA \times A.$

Note that (isomorphism classes of) [subobjects](#page-28-0) of A are in bijection with morphisms $1 \rightarrow PA$. C. J. Mikkelses showed that any [topos](#page-54-2) has finite [colimits;](#page-20-2) we'll give Bob Paré's proof, which is much simpler.

Proposition 7.10. Assuming that:

• $\mathcal E$ a [topos](#page-54-2)

Thenthere exists a [monadic](#page-36-1) [functor](#page-2-0) $\mathcal{E}^{op} \to \mathcal{E}$ $\mathcal{E}^{op} \to \mathcal{E}$ $\mathcal{E}^{op} \to \mathcal{E}$. In particular, \mathcal{E}^{op} has finite [colimits](#page-20-2) and if \mathcal{E} has [limits](#page-20-2) of shape J then it also has [colimits](#page-20-2) of shape $J^{\rm op}$ $J^{\rm op}$ $J^{\rm op}$.

*Proof.*We make the assignment $A \mapsto PA$ into a [functor](#page-2-0) $P : \mathcal{E} \to \mathcal{E}$ and a functor $P^* : \mathcal{E}^{op} \to \mathcal{E}$ $P^* : \mathcal{E}^{op} \to \mathcal{E}$ $P^* : \mathcal{E}^{op} \to \mathcal{E}$: given $f: A \to B$, $Pf: PA \to PB$ corresponds to the [image](#page-49-1) of $\exists_A \rightarrow \neg PA \times A \stackrel{1 \times f}{\rightarrow} PA \times B$, and P^*f corresponds to the [pullback](#page-22-0) of

$$
\begin{array}{c}\n\exists_B \\
\downarrow \\
\uparrow \\
PB \times A \xrightarrow{1 \times f} PB \times B\n\end{array}
$$

Given $C \stackrel{g}{\to} PA$ corresponding to $R \to C \times A$, $(Pf)g$ corresponds to the [image](#page-49-1) of $R \to C \times A \stackrel{1 \times f}{\to} C \times B$ and similarly given $S \rightarrow D \times B$, composing with P^*f corresponds to pulling back along $D \times A \stackrel{1 \times f}{\rightarrow} D \times B$.

Givena [pullback](#page-22-0) square

$$
D \xrightarrow{h} A
$$

\n
$$
\downarrow_k
$$

\n
$$
B \xrightarrow{g} C
$$

in \mathcal{E} ,

$$
\begin{array}{ccc}\nPD & \xleftarrow{\frown}{P^*h} & PA \\
\downarrow{P^k} & & \downarrow{Pf} \\
PB & \xleftarrow{\frown}{P^*g} & PC\n\end{array}
$$

commutes, since both ways correspond to the [image](#page-49-1) of the left vertical composite in

$$
E \longrightarrow \exists A
$$

\n
$$
P A \times D \longrightarrow P A \times A
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
P A \times B \longrightarrow P A \times C
$$

where both squares are [pullbacks.](#page-22-0)

Now, as in [Example 5.14\(](#page-40-0)d),we have that if $E \stackrel{e}{\to} A \stackrel{f}{\longrightarrow} B$ is a c[oreflexive](#page-37-0) in \mathcal{E} , then

$$
PB \xrightarrow[p g]{P^*f} PA \xrightarrow[P g]{P^*e} PE
$$

isa [split coequaliser](#page-37-0) [coequaliser](#page-10-1) in \mathcal{E} . Also, P^* is self-adjoint on the right, and it [reflects](#page-24-0) isomorphisms by Exercise 7.17(v). The second assertion follows from [Proposition 5.8\(](#page-36-2)i). \Box

Lecture 23

Definition 7.11.

- (a)By the *support* of an object A in a [regular](#page-50-0) [category,](#page-1-1) we mean the [image](#page-49-1) of $A \rightarrow 1$. We say Ais *well-supported* if $A \rightarrow 1$ is a [cover.](#page-49-1)
- (b) We saya [regular](#page-50-0) [category](#page-1-1) C is *totally supported* if every object is well-supported. We say C is *almost totally supported* if every object is either well-supported or a strict [initial object,](#page-14-2) where we cann an object 0 *strict* if every $A \to 0$ is an isomorphism. (Given finite [limits,](#page-20-2) a strictobject is [initial](#page-14-2) since for any A there exists $0 \stackrel{\pi^{-1}}{\rightarrow} 0 \times A \stackrel{\pi_2}{\rightarrow} A$, and the [equaliser](#page-10-1) of any pair $0 \implies A$ is a).
- (c)We say a [regular](#page-50-0) [category](#page-1-1) C is *capital* if its [terminal object](#page-14-2) 1 is a [detector,](#page-11-0) i.e. $C(1, \bullet)$ [reflects](#page-24-0) isomorphisms.

Example. [Gp](#page-1-2) and AbGp are [totally-supported](#page-56-0) since their [terminal objects](#page-14-2) are [initial.](#page-14-2) [Set](#page-1-2) is [almost totally-supported](#page-56-0) and [capital.](#page-56-0) Note that [capital](#page-56-0) implies [almost totally-supported](#page-56-0) since if A isn't [well-supported](#page-56-0) there are no morphisms $1 \rightarrow A$.

A [representable](#page-9-0) [functor](#page-2-0) $\mathcal{C}(A, \bullet)$ always [preserves](#page-24-0) [limits,](#page-20-2) so it's a [regular](#page-10-1) functor if and only if A is cover-projective (c.f. [Definition 2.10\)](#page-12-1).

Lemma 7.12. Assuming that:

- C a [locally small](#page-8-1) [capital](#page-56-0) [regular](#page-50-0) [category](#page-1-1)
- Then 1 is [cover-projective.](#page-56-1)

Proof. Since [covers](#page-49-1) are stable under [pullback,](#page-22-0) we need to show that every $A \rightarrow 1$ is [split](#page-7-2) [epic.](#page-7-1) If $A \cong 1$, nothing to prove. If not, the projections $A \times A \rightleftharpoons A$ aren't equal (since their [coequaliser](#page-10-1) is $A \rightarrow 1$, by [Proposition 7.5\)](#page-50-1). So there exists $1 \rightarrow A \times A$ not factoring through their [equaliser,](#page-10-1) so there exists $1 \rightarrow A \times A \rightarrow A$. \Box

If C is [regular,](#page-50-0) the [full](#page-6-0) su[bcategory](#page-1-1) C_{ws} of [well-supported](#page-56-0) objects is closed under finite [products](#page-10-0) since

isa [pullback,](#page-22-0) and under [pullbacks](#page-22-0) of [covers](#page-49-1) since if $A \rightarrow B$ then A and B have the same [support.](#page-56-0)

Wewrite \mathcal{C}_{tv} for the [category](#page-1-1) obtained from \mathcal{C}_{ws} \mathcal{C}_{ws} \mathcal{C}_{ws} by adjoining a [strict initial object](#page-56-0) 0: this is [regular](#page-50-0) and [almost totally-supported](#page-56-0) and the [functor](#page-2-0) $C \to C_{\text{tv}}$ sending all non[-well-supported](#page-56-0) objects to 0 is [regular](#page-10-1) (c.f. Exercise 5.19).

Lemma 7.13. Assuming that:

• C a [small](#page-1-3) [almost totally-supported](#page-56-0) [regular](#page-50-0) [category](#page-1-1)

Then there exists an isomorphism[-reflecting](#page-24-0) [regular](#page-10-1) [functor](#page-2-0) $I: \mathcal{C} \to \mathcal{C}'$, where \mathcal{C}' is also [small](#page-1-3) and [almost totally-supported,](#page-56-0) such that for every [well-supported](#page-56-0) $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$ $A \in ob\mathcal{C}$ there exists a morphism $1 \rightarrow IA$ in C' not factoring through $I(m)$ for any proper

Proof. Recall from Exercise 7.17: C [regular](#page-50-0) implies C/A regular for any A, and for any $f : A \to B$ in C [pullback](#page-22-0)along f defines a [regular](#page-10-1) [functor](#page-2-0) $f^*: \mathcal{C}/B \to \mathcal{C}/A$, which has a [left adjoint](#page-14-1) $\Sigma_f: \mathcal{C}/A \to \mathcal{C}/B$ sending $g: C \to A$ to fg. And f^* [reflects](#page-24-0) isomorphisms if and only if f is a [cover.](#page-49-1)

We'll define \mathcal{C}' as $(\hat{\mathcal{C}})_{\text{tv}}$ $(\hat{\mathcal{C}})_{\text{tv}}$ $(\hat{\mathcal{C}})_{\text{tv}}$ where $\hat{\mathcal{C}}$ is easier to describe.

To satisfy the desired conclusion for a single [well-supported](#page-56-0) object A, enough to take $(!)_A^*$: $C \cong C/1 \rightarrow$ \mathcal{C}/A , since $(!_A)^*A = (A \times A \stackrel{\pi_2}{\to} A)$ acquires a point $\Delta : (A \stackrel{1}{\to} A) \to (A \times A \to A)$ not factoring through $(A' \times A \rightarrow A)$ for any proper $A \rightarrow A$.

More generally, for any finite list A_1, \ldots, A_n of [well-supported](#page-56-0) objects, we can take $\mathcal{C}/\prod_{i=1}^n A_i$.

We define a *base* to be a finite list $\vec{A} = (A_1, \ldots, A_n)$ of distinct [well-supported](#page-56-0) objecs of C. We preorder the set B of bases by $\vec{A} \leq \vec{B}$ if \vec{B} contains all the members of \vec{A} . We write $\prod \vec{A}$ for the product $\prod_{i=1}^{n} A_i$ and if $\vec{A} \leq \vec{B}$ we write $\pi_{\vec{B}, \vec{A}}$ for the [product](#page-10-0) projection $\prod \vec{B} \to \prod \vec{A}$. This makes $\vec{A} \mapsto \prod \vec{A}$ into a [functor](#page-2-0) $\mathcal{B}^{\text{op}} \to \mathcal{C}$ $\mathcal{B}^{\text{op}} \to \mathcal{C}$ $\mathcal{B}^{\text{op}} \to \mathcal{C}$.

Hencethe assignment $\vec{A} \to \mathcal{C}/\prod \vec{A}, \pi_{\vec{B}, \vec{A}} \mapsto \pi_{\vec{B}, \vec{A}}^*$ is 'almost' a [functor](#page-2-0) $\mathcal{B} \to \mathbf{Cat}$ $\mathcal{B} \to \mathbf{Cat}$ $\mathcal{B} \to \mathbf{Cat}$.

We now define $\hat{\mathcal{C}}$: its objects are pairs (\vec{B}, f) where \vec{B} is a base and $f : A \to \prod \vec{B}$ is an object of $\mathcal{C}/\prod \vec{B}$. Morphisms $(\vec{B}, f) \to (\vec{B}', f')$ are [represented](#page-9-0) by pairs (\vec{C}, g) where \vec{C} is a base containing \vec{B} and \vec{B}' and $g: \pi^* f \to \pi'^* f'$ in $\mathcal{C}/\prod \vec{C}$, subject to the relation which identifies (\vec{C}, g) with (\vec{C}', g') if $\vec{C} \leq \vec{C'}$ and the [pullback](#page-22-0) of g to $\mathcal{C}/\prod \vec{C}$ is isomorphic to g'.

Clearly, each $\mathcal{C}/\prod \vec{B}$ sits inside $\hat{\mathcal{C}}$ as a non[-full](#page-6-0) su[bcategory;](#page-1-1) so in particular $\mathcal{C} \cong \mathcal{C}/\prod []$ is a su[bcategory](#page-1-1) of $\hat{\mathcal{C}}, \hat{\mathcal{C}}$ is [regular,](#page-50-0) and the inclusions $\mathcal{C}/\prod \vec{B} \to \hat{\mathcal{C}}$ are isomorphism[-reflecting](#page-24-0) [regular](#page-10-1) [functors.](#page-2-0)

Given a finite [diagram](#page-20-1) in $\hat{\mathcal{C}}$, we can choose \vec{B} such that all edges of the diagram appear as morphisms in $\mathcal{C}/\prod \vec{B}$, and take the [limit](#page-20-2) there, and this is a limit in $\hat{\mathcal{C}}$. Similarly for [images.](#page-49-1)

Also, if a morphism f becomes an isomorphism in $\hat{\mathcal{C}}$, its inverse must live $\mathcal{C}/\prod \vec{B}$ for some \vec{B} , hence f is an isomorphism $\mathcal{C}/\prod \vec{B}$.

We define $\mathcal{C}'=(\hat{\mathcal{C}})_{\text{tv}}$ $\mathcal{C}'=(\hat{\mathcal{C}})_{\text{tv}}$ $\mathcal{C}'=(\hat{\mathcal{C}})_{\text{tv}}$: the induced [functor](#page-2-0) $\mathcal{C}\to\hat{\mathcal{C}}\to\mathcal{C}'$ is still isomorphism [reflecting](#page-24-0) since \mathcal{C} is [almost](#page-56-0) [totally-supported](#page-56-0). \Box

Lecture 24

Lemma 7.14. Assuming that:

• $\mathcal C$ a [small](#page-1-3) [regular](#page-50-0) and [almost totally-supported](#page-56-0) [category](#page-1-1)

Then there exists an isomorphism [reflecting](#page-24-0) [regular](#page-10-1) [functor](#page-2-0) $C \rightarrow \hat{C}$ where C is [capital.](#page-56-0) Hence in particular, there is an isomorphism[-reflecting](#page-24-0) [regular](#page-10-1) [functor](#page-2-0) $C \rightarrow$ **[Set](#page-1-2)**.

Proof. Consider the sequence

 $\mathcal{C} = \mathcal{C}_0 \rightarrow \mathcal{C}_1 \rightarrow \mathcal{C}_2 \rightarrow \cdots$

where each C_{n+1} is obtained from C_n by the construction of [Lemma 7.13.](#page-57-0)

We define $\hat{\mathcal{C}}$ to be the pseudo[-colimit](#page-20-2) of this sequence: [ob](#page-1-1)jects are pairs (n, A) where $A \in ob \mathcal{C}_n$, and morphisms $(n, A) \to (m, B)$ are [represented](#page-9-0) by pairs (p, f) where $p \ge \max\{m, n\}$ and $F : IA \to I'B$ in \mathcal{C}_p , modulo the identification of (p, f) with (p', f') if $p \leq p'$ and $f' = If$.

The proof that C is [regular,](#page-50-0) and that the embeddings $C_n \to \hat{C}$ are isomorphism[-reflecting](#page-24-0) [regular](#page-10-1) [functors,](#page-2-0) is as in [Lemma 7.13.](#page-57-0)

Given any non-invertible [monomorphism](#page-7-1) $A' \rightarrowtail A$ in \hat{C} , it lives in \mathcal{C}_n for some n, so there exists $1 \rightarrow A$ in C_{n+1} not factoring through $A' \rightarrow A$.

But if $A \stackrel{f}{\to} B$ isn't [monic](#page-7-1) in $\hat{\mathcal{C}}$, the legs $R \stackrel{a}{\longrightarrow} A$ of its kernel-pair aren't equal, so there exists $1 \stackrel{r}{\to} R$ not factoring through their equation, so $1 \frac{ar}{br} A$ are distinct but have the same composite with f.

So $\hat{\mathcal{C}}(1,\bullet)$ [reflects](#page-24-0) [monomorphisms](#page-7-1) and hence [reflects](#page-24-0) isomorphisms.

 \Box

Theorem 7.15. Assuming that:

• C [small](#page-1-3) and [regular](#page-50-0)

Then there exists a set I and an isomorphism[-reflecting](#page-24-0) [regular](#page-10-1) [functor](#page-2-0) $C \to \mathbf{Set}^I$ $C \to \mathbf{Set}^I$ $C \to \mathbf{Set}^I$.

*Proof.*Let I be a representative set of [subobjects](#page-28-0) of 1 in C, and for each $U \in I$ consider the composite

$$
\mathcal{C} \stackrel{(!_U)^*}{\to} \mathcal{C}/U \to (\mathcal{C}/U)_{\rm tv} \to \widehat{(\mathcal{C}/U)_{\rm tv}} \to \mathbf{Set},
$$

where the third factor is the [functor](#page-2-0) of [Lemma 7.14](#page-58-0) and the fourthis [represented](#page-9-0) by 1.

Given any non-invertible morphism $A \stackrel{f}{\to} B$ in C, if U is the [support](#page-56-0) of B then $(!)_H^* f$ remains noninvertiblein \mathcal{C}/U and its codomain is [well-supported](#page-56-0) there, so it remains non-invertible in $(\mathcal{C}/U)_{\text{tv}}$ $(\mathcal{C}/U)_{\text{tv}}$ $(\mathcal{C}/U)_{\text{tv}}$ and hence in [Set](#page-1-2).

So these [functors](#page-2-0) collectively [reflect](#page-24-0) isomorphisms.

 \Box

Remark 7.16.

- (a)Barr's original embedding theorem produces a [full](#page-6-0) and [faithful](#page-6-0) [regular](#page-10-1) [functor](#page-2-0) $\mathcal{C} \to [\mathcal{D}, \mathbf{Set}]$ $\mathcal{C} \to [\mathcal{D}, \mathbf{Set}]$ $\mathcal{C} \to [\mathcal{D}, \mathbf{Set}]$ for some [small](#page-1-3) [category](#page-1-1) D. Moreover if C is [almost totally-supported](#page-56-0) we can take D to be a monoid.
- (b) [Theorem 7.15](#page-58-1) yields a 'meta theorem' saying that 'anything we can prove in [Set](#page-1-2) is true in all [regular](#page-10-1) [categories'](#page-1-1).

For example to prove [Proposition 7.5](#page-50-1) [\(cover](#page-49-1) implies [regular](#page-10-1) [epic\)](#page-7-1),given a [cover](#page-49-1) $A \stackrel{f}{\rightarrow} B$ in a [regular](#page-50-0) [category](#page-1-1) C, and a $A \stackrel{g}{\rightarrow} C$ having equal composites with the kernel-pair $R \Longrightarrow A$ off, we can cut down to a [small](#page-1-3) su[bcategory](#page-1-1) \mathcal{C}' containing f and g and closed under finite

[limits](#page-20-2) and [images,](#page-49-1) and then show that the first component of $I \stackrel{(h,k)}{\rightarrow} A \times C$ becomes an isomorphism in \mathbf{Set}^I \mathbf{Set}^I \mathbf{Set}^I .

(c) Abelian [categories](#page-1-1) are [regular](#page-50-0) categories enriched over \bf{AbGp} (i.e. for any two objects A and $B, \mathcal{A}(A, B)$ has an abelian group structure and composition distributes over addition).

Abelian [categories](#page-1-1) are [totally-supported](#page-56-0) since their [terminal objects](#page-14-2) are [initial,](#page-14-2) so for any [small](#page-1-3) abelian A we get an isomorphism[-reflecting](#page-24-0) [regular](#page-10-1) [functor](#page-2-0) $A \rightarrow$ [Set](#page-1-2) and hence an isomorphism[-reflecting](#page-24-0) [functor](#page-2-0) $\mathcal{A} \cong \mathbf{AbGp}(\mathcal{A}) \to \mathbf{AbGp}(\mathbf{Set}) = \mathbf{AbGp}$ $\mathcal{A} \cong \mathbf{AbGp}(\mathcal{A}) \to \mathbf{AbGp}(\mathbf{Set}) = \mathbf{AbGp}$ $\mathcal{A} \cong \mathbf{AbGp}(\mathcal{A}) \to \mathbf{AbGp}(\mathbf{Set}) = \mathbf{AbGp}$.

Index

[Adj](#page-34-0) [35,](#page-34-1) [36](#page-35-1) [Cat](#page-2-0) [4,](#page-3-3) [15,](#page-14-5) [20,](#page-19-2) [46,](#page-45-1) [58](#page-57-1) [Deltadiag](#page-21-0) [22,](#page-21-2) [27](#page-26-2) [Eilenberg-Moore algebra](#page-32-0) [33](#page-32-2) [EMaT](#page-32-0) [33,](#page-32-2) [34,](#page-33-1) [35,](#page-34-1) [36,](#page-35-1) [37,](#page-36-3) [38,](#page-37-1) [39,](#page-38-2) [42,](#page-41-1) [48,](#page-47-3) [49,](#page-48-0) [51](#page-50-2) [KcT](#page-33-0) [34,](#page-33-1) [35,](#page-34-1) [36,](#page-35-1) [37](#page-36-3) [Lawvere theory](#page-47-1) [48,](#page-47-3) [49](#page-48-0) [Relc](#page-52-0) [53,](#page-52-1) [54,](#page-53-1) [55](#page-54-3) [Setf](#page-47-0) [48](#page-47-3) [Sub](#page-28-0) [29,](#page-28-2) [50](#page-49-2) [adjoint](#page-14-1) [15,](#page-14-5) [17](#page-16-3) [adjoint](#page-14-1) [15,](#page-14-5) [16,](#page-15-3) [17,](#page-16-3) [18,](#page-17-2) [19,](#page-18-1) [27,](#page-26-2) [32,](#page-31-5) [35,](#page-34-1) [36,](#page-35-1) [37,](#page-36-3) [38,](#page-37-1) [39,](#page-38-2) [40,](#page-39-1) [42,](#page-41-1) [54](#page-53-1) [adjunction](#page-14-1) [15,](#page-14-5) [16,](#page-15-3) [17,](#page-16-3) [18,](#page-17-2) [19,](#page-18-1) [20,](#page-19-2) [27,](#page-26-2) [32,](#page-31-5) [33,](#page-32-2) [34,](#page-33-1) [35,](#page-34-1) [36,](#page-35-1) [37,](#page-36-3) [40,](#page-39-1) [42](#page-41-1) [allegory](#page-54-1) [54,](#page-53-1) [55](#page-54-3) [adjoint on the right](#page-15-0) [15](#page-14-5) [almost totally-supported](#page-56-0) [56,](#page-55-0) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [balanced](#page-7-1) [8,](#page-7-3) [12](#page-11-2) [bull](#page-53-0) [53,](#page-52-1) [54,](#page-53-1) [55](#page-54-3) [capital](#page-56-0) [56,](#page-55-0) [57,](#page-56-4) [58](#page-57-1) [category](#page-1-1) [2,](#page-1-5) [3,](#page-2-2) [4,](#page-3-3) [5,](#page-4-1) [6,](#page-5-5) [7,](#page-6-1) [8,](#page-7-3) [9,](#page-8-4) [10,](#page-9-2) [11,](#page-10-3) [12,](#page-11-2) [13,](#page-12-3) [15,](#page-14-5) [16,](#page-15-3) [17,](#page-16-3) [18,](#page-17-2) [20,](#page-19-2) [21,](#page-20-3) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [26,](#page-25-2) [27,](#page-26-2) [28,](#page-27-4) [29,](#page-28-2) [32,](#page-31-5) [33,](#page-32-2) [34,](#page-33-1) [35,](#page-34-1) [40,](#page-39-1) [44,](#page-43-4) [45,](#page-44-2) [46,](#page-45-1) [47,](#page-46-0) [48,](#page-47-3) [49,](#page-48-0) [50,](#page-49-2) [51,](#page-50-2) [52,](#page-51-1) [53,](#page-52-1) [54,](#page-53-1) [55,](#page-54-3) [56,](#page-55-0) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2)

[categorical coproduct](#page-10-0) [11](#page-10-3)

[category](#page-1-1) [2,](#page-1-5) [3,](#page-2-2) [4,](#page-3-3) [7,](#page-6-1) [9,](#page-8-4) [12,](#page-11-2) [14,](#page-13-0) [15,](#page-14-5) [16,](#page-15-3) [17,](#page-16-3) [21,](#page-20-3) [24,](#page-23-2) [25,](#page-24-2) [27,](#page-26-2) [28,](#page-27-4) [29,](#page-28-2) [30,](#page-29-1) [33,](#page-32-2) [34,](#page-33-1) [37,](#page-36-3) [38,](#page-37-1) [40,](#page-39-1) [44,](#page-43-4) [46,](#page-45-1) [47,](#page-46-0) [57,](#page-56-4) [59](#page-58-2) [catexamples](#page-1-2) [2,](#page-1-5) [4,](#page-3-3) [5,](#page-4-1) [6,](#page-5-5) [8,](#page-7-3) [9,](#page-8-4) [10,](#page-9-2) [11,](#page-10-3) [12,](#page-11-2) [13,](#page-12-3) [14,](#page-13-0) [15,](#page-14-5) [20,](#page-19-2) [22,](#page-21-2) [25,](#page-24-2) [28,](#page-27-4) [29,](#page-28-2) [31,](#page-30-0) [32,](#page-31-5) [40,](#page-39-1) [45,](#page-44-2) [46,](#page-45-1) [47,](#page-46-0) [48,](#page-47-3) [49,](#page-48-0) [51,](#page-50-2) [53,](#page-52-1) [55,](#page-54-3) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [categorical property](#page-5-1) [6](#page-5-5) [categorical coproduct](#page-10-0) [11,](#page-10-3) [22](#page-21-2) [cartesian closed](#page-14-4) [15,](#page-14-5) [40](#page-39-1) [circ](#page-53-0) [54,](#page-53-1) [55](#page-54-3) [coequaliser](#page-10-1) [11,](#page-10-3) [37,](#page-36-3) [38,](#page-37-1) [39,](#page-38-2) [40,](#page-39-1) [42,](#page-41-1) [44,](#page-43-4) [45,](#page-44-2) [56,](#page-55-0) [57](#page-56-4) [colimit](#page-20-2) [21,](#page-20-3) [22,](#page-21-2) [25,](#page-24-2) [36,](#page-35-1) [37,](#page-36-3) [40,](#page-39-1) [44,](#page-43-4) [45,](#page-44-2) [46,](#page-45-1) [47,](#page-46-0) [55,](#page-54-3) [59](#page-58-2) [complete](#page-24-1) [25,](#page-24-2) [28,](#page-27-4) [30,](#page-29-1) [31](#page-30-0) [completeness](#page-24-1) [25](#page-24-2) [cone](#page-20-2) [21,](#page-20-3) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [27,](#page-26-2) [28,](#page-27-4) [30,](#page-29-1) [37,](#page-36-3) [44,](#page-43-4) [45,](#page-44-2) [46,](#page-45-1) [47](#page-46-0) [cone](#page-20-2) [22](#page-21-2) [contravariant](#page-3-2) [4,](#page-3-3) [15](#page-14-5) [coproduct](#page-10-0) [11,](#page-10-3) [22,](#page-21-2) [25,](#page-24-2) [28,](#page-27-4) [36,](#page-35-1) [40,](#page-39-1) [44,](#page-43-4) [48](#page-47-3) [cospan](#page-22-0) [22,](#page-21-2) [44](#page-43-4) [counit](#page-17-0) [17,](#page-16-3) [18,](#page-17-2) [19,](#page-18-1) [20,](#page-19-2) [33,](#page-32-2) [39,](#page-38-2) [55](#page-54-3) [cover](#page-49-1) [50,](#page-49-2) [51,](#page-50-2) [52,](#page-51-1) [53,](#page-52-1) [54,](#page-53-1) [56,](#page-55-0) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [cover](#page-49-1) [51,](#page-50-2) [52,](#page-51-1) [55,](#page-54-3) [57,](#page-56-4) [59](#page-58-2) [cover-projective](#page-56-1) [57](#page-56-4) [creates](#page-24-0) [25,](#page-24-2) [36,](#page-35-1) [37,](#page-36-3) [39,](#page-38-2) [46](#page-45-1) [darr](#page-15-1) [16,](#page-15-3) [17,](#page-16-3) [22,](#page-21-2) [27,](#page-26-2) [28,](#page-27-4) [30,](#page-29-1) [31,](#page-30-0) [47](#page-46-0) [detector](#page-11-0) [12,](#page-11-2) [56](#page-55-0) [detecting](#page-11-0) [12](#page-11-2) [diagram](#page-20-1) [21,](#page-20-3) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [27,](#page-26-2) [28,](#page-27-4) [30,](#page-29-1) [34,](#page-33-1) [40,](#page-39-1) [42,](#page-41-1) [44,](#page-43-4) [45,](#page-44-2) [46,](#page-45-1) [47,](#page-46-0) [58](#page-57-1) [directed](#page-43-2) [44,](#page-43-4) [46,](#page-45-1) [47](#page-46-0)

[direct limit](#page-23-1) [22,](#page-21-2) [44](#page-43-4) [direct sequence](#page-23-1) [22](#page-21-2) [edge](#page-20-1) [21,](#page-20-3) [27](#page-26-2) [effective](#page-54-0) [55](#page-54-3) [effective regular](#page-54-0) [55](#page-54-3) [Eilenberg-Moore](#page-32-0) [33,](#page-32-2) [35](#page-34-1) [\(4\)](#page-32-1) [33,](#page-32-2) [34](#page-33-1) [\(5\)](#page-32-1) [33](#page-32-2) [\(6\)](#page-32-1) [33](#page-32-2) [epimorphism](#page-7-1) [8,](#page-7-3) [12,](#page-11-2) [13,](#page-12-3) [14,](#page-13-0) [29,](#page-28-2) [46,](#page-45-1) [50,](#page-49-2) [51,](#page-50-2) [54](#page-53-1) [epic](#page-7-1) [8,](#page-7-3) [12,](#page-11-2) [14,](#page-13-0) [19,](#page-18-1) [22,](#page-21-2) [28,](#page-27-4) [36,](#page-35-1) [38,](#page-37-1) [50,](#page-49-2) [52,](#page-51-1) [57,](#page-56-4) [59](#page-58-2) [equaliser](#page-10-1) [11,](#page-10-3) [12,](#page-11-2) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [28,](#page-27-4) [30,](#page-29-1) [31,](#page-30-0) [39,](#page-38-2) [40,](#page-39-1) [50,](#page-49-2) [56,](#page-55-0) [57](#page-56-4) [equiv](#page-5-1) [6,](#page-5-5) [7](#page-6-1) [equivalence](#page-5-1) [6,](#page-5-5) [7,](#page-6-1) [15,](#page-14-5) [18,](#page-17-2) [37](#page-36-3) [equivalent](#page-5-1) [6,](#page-5-5) [48](#page-47-3) [equivalence relation](#page-54-0) [55](#page-54-3) [essentially injective](#page-6-0) [7](#page-6-1) [essentially surjective](#page-6-0) [7,](#page-6-1) [37](#page-36-3) [faithful](#page-6-0) [7,](#page-6-1) [9,](#page-8-4) [10,](#page-9-2) [12,](#page-11-2) [19,](#page-18-1) [36,](#page-35-1) [53,](#page-52-1) [55,](#page-54-3) [59](#page-58-2) [filtered](#page-43-1) [44,](#page-43-4) [45,](#page-44-2) [46,](#page-45-1) [47](#page-46-0) [full](#page-6-0) [7,](#page-6-1) [9,](#page-8-4) [10,](#page-9-2) [19,](#page-18-1) [20,](#page-19-2) [34,](#page-33-1) [36,](#page-35-1) [40,](#page-39-1) [48,](#page-47-3) [49,](#page-48-0) [55,](#page-54-3) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [functor](#page-2-0) [3,](#page-2-2) [4,](#page-3-3) [6,](#page-5-5) [7,](#page-6-1) [9,](#page-8-4) [10,](#page-9-2) [11,](#page-10-3) [12,](#page-11-2) [13,](#page-12-3) [15,](#page-14-5) [16,](#page-15-3) [17,](#page-16-3) [21,](#page-20-3) [22,](#page-21-2) [25,](#page-24-2) [27,](#page-26-2) [28,](#page-27-4) [30,](#page-29-1) [32,](#page-31-5) [35,](#page-34-1) [36,](#page-35-1) [37,](#page-36-3) [38,](#page-37-1) [39,](#page-38-2) [40,](#page-39-1) [46,](#page-45-1) [47,](#page-46-0) [48,](#page-47-3) [49,](#page-48-0) [50,](#page-49-2) [51,](#page-50-2) [53,](#page-52-1) [55,](#page-54-3) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [functorial](#page-2-0) [3,](#page-2-2) [9,](#page-8-4) [16,](#page-15-3) [33,](#page-32-2) [36](#page-35-1) [funccat](#page-3-0) [6,](#page-5-5) [9,](#page-8-4) [10,](#page-9-2) [12,](#page-11-2) [13,](#page-12-3) [14,](#page-13-0) [15,](#page-14-5) [22,](#page-21-2) [25,](#page-24-2) [26,](#page-25-2) [27,](#page-26-2) [32,](#page-31-5) [45,](#page-44-2) [46,](#page-45-1) [47,](#page-46-0) [50,](#page-49-2) [51,](#page-50-2) [59](#page-58-2) G[-split](#page-37-0) [38,](#page-37-1) [39](#page-38-2)

[has filtered colimits](#page-43-5) [44](#page-43-4) [image](#page-49-1) [50,](#page-49-2) [51,](#page-50-2) [52,](#page-51-1) [53,](#page-52-1) [54,](#page-53-1) [55,](#page-54-3) [56,](#page-55-0) [58,](#page-57-1) [59](#page-58-2) [initial](#page-14-2) [15,](#page-14-5) [17,](#page-16-3) [30,](#page-29-1) [56,](#page-55-0) [57,](#page-56-4) [59](#page-58-2) [inverse limit](#page-23-1) [22,](#page-21-2) [46](#page-45-1) [inverse sequence](#page-23-1) [22](#page-21-2) [initial object](#page-14-2) [15,](#page-14-5) [16,](#page-15-3) [27,](#page-26-2) [28,](#page-27-4) [30,](#page-29-1) [35,](#page-34-1) [56](#page-55-0) [Kleisli category](#page-33-0) [34](#page-33-1) [Kleisli](#page-33-0) [34,](#page-33-1) [35](#page-34-1) [left adjoint](#page-14-1) [15,](#page-14-5) [16,](#page-15-3) [17,](#page-16-3) [19,](#page-18-1) [20,](#page-19-2) [25,](#page-24-2) [26,](#page-25-2) [28,](#page-27-4) [30,](#page-29-1) [31,](#page-30-0) [33,](#page-32-2) [37,](#page-36-3) [39,](#page-38-2) [40,](#page-39-1) [47,](#page-46-0) [58](#page-57-1) [commute](#page-44-0) [45,](#page-44-2) [46](#page-45-1) [limit](#page-20-2) [21,](#page-20-3) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [26,](#page-25-2) [27,](#page-26-2) [28,](#page-27-4) [30,](#page-29-1) [31,](#page-30-0) [36,](#page-35-1) [37,](#page-36-3) [45,](#page-44-2) [46,](#page-45-1) [47,](#page-46-0) [50,](#page-49-2) [55,](#page-54-3) [56,](#page-55-0) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [locally small](#page-8-1) [9,](#page-8-4) [10,](#page-9-2) [11,](#page-10-3) [12,](#page-11-2) [13,](#page-12-3) [15,](#page-14-5) [28,](#page-27-4) [30,](#page-29-1) [31,](#page-30-0) [54,](#page-53-1) [57](#page-56-4) [model](#page-47-1) [48,](#page-47-3) [49](#page-48-0) [monad](#page-31-3) [32,](#page-31-5) [33,](#page-32-2) [34,](#page-33-1) [35,](#page-34-1) [36,](#page-35-1) [37,](#page-36-3) [38,](#page-37-1) [40,](#page-39-1) [42,](#page-41-1) [47,](#page-46-0) [48,](#page-47-3) [49,](#page-48-0) [51](#page-50-2) [monadic](#page-36-1) [37,](#page-36-3) [39,](#page-38-2) [40,](#page-39-1) [51,](#page-50-2) [55](#page-54-3) [monic](#page-7-1) [8,](#page-7-3) [11,](#page-10-3) [12,](#page-11-2) [18,](#page-17-2) [22,](#page-21-2) [26,](#page-25-2) [28,](#page-27-4) [29,](#page-28-2) [30,](#page-29-1) [50,](#page-49-2) [52,](#page-51-1) [54,](#page-53-1) [59](#page-58-2) [monomorphism](#page-7-1) [8,](#page-7-3) [11,](#page-10-3) [12,](#page-11-2) [13,](#page-12-3) [26,](#page-25-2) [29,](#page-28-2) [30,](#page-29-1) [46,](#page-45-1) [51,](#page-50-2) [59](#page-58-2) [monoepi](#page-7-1) [14,](#page-13-0) [29,](#page-28-2) [30,](#page-29-1) [50,](#page-49-2) [51,](#page-50-2) [52,](#page-51-1) [53,](#page-52-1) [54,](#page-53-1) [55,](#page-54-3) [56,](#page-55-0) [58,](#page-57-1) [59](#page-58-2) [morphf](#page-8-2) [9,](#page-8-4) [10](#page-9-2) [morphs](#page-8-1) [9](#page-8-4) [\(1\)](#page-31-1) [32,](#page-31-5) [33,](#page-32-2) [35](#page-34-1) [\(2\)](#page-31-1) [32,](#page-31-5) [33,](#page-32-2) [35](#page-34-1)

[\(3\)](#page-31-2) [32,](#page-31-5) [33](#page-32-2)

[natural](#page-3-0) [4,](#page-3-3) [9](#page-8-4)

[natural isomorphism](#page-5-0) [6,](#page-5-5) [10,](#page-9-2) [18](#page-17-2)

- [naturality square](#page-3-0) [4,](#page-3-3) [7,](#page-6-1) [35,](#page-34-1) [36](#page-35-1)
- [natural transformation](#page-3-0) [4,](#page-3-3) [5,](#page-4-1) [6,](#page-5-5) [9,](#page-8-4) [16,](#page-15-3) [17,](#page-16-3) [22,](#page-21-2) [36,](#page-35-1) [47,](#page-46-0) [49](#page-48-0)
- [naturality](#page-3-0) [4,](#page-3-3) [7,](#page-6-1) [15,](#page-14-5) [16,](#page-15-3) [18,](#page-17-2) [19,](#page-18-1) [27,](#page-26-2) [32,](#page-31-5) [33,](#page-32-2) [36](#page-35-1)
- [naturally isomorphic](#page-5-4) [6,](#page-5-5) [15](#page-14-5)
- [opcat](#page-2-1) [4,](#page-3-3) [5,](#page-4-1) [6,](#page-5-5) [8,](#page-7-3) [9,](#page-8-4) [10,](#page-9-2) [11,](#page-10-3) [12,](#page-11-2) [13,](#page-12-3) [15,](#page-14-5) [22,](#page-21-2) [40,](#page-39-1) [45,](#page-44-2) [46,](#page-45-1) [47,](#page-46-0) [48,](#page-47-3) [53,](#page-52-1) [55,](#page-54-3) [58](#page-57-1)
- [injective](#page-12-1) [13](#page-12-3)
- [reflexive](#page-37-0) [38,](#page-37-1) [39,](#page-38-2) [40,](#page-39-1) [42,](#page-41-1) [45,](#page-44-2) [56](#page-55-0)
- [preserve](#page-24-0) [25](#page-24-2)
- [preserves](#page-24-0) [25,](#page-24-2) [26,](#page-25-2) [27,](#page-26-2) [28,](#page-27-4) [30,](#page-29-1) [31,](#page-30-0) [37,](#page-36-3) [38,](#page-37-1) [39,](#page-38-2) [45,](#page-44-2) [47,](#page-46-0) [48,](#page-47-3) [49,](#page-48-0) [51,](#page-50-2) [57](#page-56-4)
- [product](#page-10-0) [11,](#page-10-3) [15,](#page-14-5) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [30,](#page-29-1) [31,](#page-30-0) [48,](#page-47-3) [49,](#page-48-0) [52,](#page-51-1) [57,](#page-56-4) [58](#page-57-1)
- [projective](#page-12-1) [13,](#page-12-3) [14](#page-13-0)
- [pullback](#page-22-0) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [26,](#page-25-2) [29,](#page-28-2) [30,](#page-29-1) [40,](#page-39-1) [46,](#page-45-1) [50,](#page-49-2) [51,](#page-50-2) [52,](#page-51-1) [53,](#page-52-1) [54,](#page-53-1) [55,](#page-54-3) [56,](#page-55-0) [57,](#page-56-4) [58](#page-57-1)
- [pushout](#page-22-0) [22,](#page-21-2) [40,](#page-39-1) [51](#page-50-2)
- [pointwise](#page-12-0) [13,](#page-12-3) [14,](#page-13-0) [19,](#page-18-1) [26](#page-25-2)
- [right adjoint](#page-14-1) [15,](#page-14-5) [20,](#page-19-2) [22,](#page-21-2) [27,](#page-26-2) [54,](#page-53-1) [55](#page-54-3)
- [reflect](#page-24-0) [25](#page-24-2)
- [reflects](#page-24-0) [25,](#page-24-2) [39,](#page-38-2) [40,](#page-39-1) [46,](#page-45-1) [56,](#page-55-0) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2)
- [reflective](#page-19-0) [19,](#page-18-1) [20](#page-19-2)
- [reflection](#page-19-0) [19,](#page-18-1) [20,](#page-19-2) [40,](#page-39-1) [49](#page-48-0)
- [reflexive](#page-54-0) [55](#page-54-3)
- [reflective subcategory](#page-19-0) [19,](#page-18-1) [25,](#page-24-2) [40](#page-39-1)
- [regular](#page-10-1) [11,](#page-10-3) [12,](#page-11-2) [51,](#page-50-2) [54,](#page-53-1) [55,](#page-54-3) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2)
- [regular](#page-50-0) [50,](#page-49-2) [51,](#page-50-2) [52,](#page-51-1) [55,](#page-54-3) [56,](#page-55-0) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2)
- [regular epi](#page-10-1) [11](#page-10-3)
- [relation](#page-51-0) [52,](#page-51-1) [53,](#page-52-1) [54,](#page-53-1) [55](#page-54-3)

[relation](#page-51-0) [52,](#page-51-1) [53,](#page-52-1) [54,](#page-53-1) [55](#page-54-3) [representation](#page-9-0) [10,](#page-9-2) [11](#page-10-3) [represented](#page-9-0) [10,](#page-9-2) [11,](#page-10-3) [58,](#page-57-1) [59](#page-58-2) [representable](#page-9-0) [10,](#page-9-2) [11,](#page-10-3) [47,](#page-46-0) [57](#page-56-4) [separator](#page-11-0) [12,](#page-11-2) [31](#page-30-0) [separating](#page-11-0) [12,](#page-11-2) [30](#page-29-1) [strict initial object](#page-56-0) [56,](#page-55-0) [57](#page-56-4) [skeletal](#page-7-0) [7,](#page-6-1) [8](#page-7-3) [skeleton](#page-7-0) [7,](#page-6-1) [8,](#page-7-3) [47](#page-46-0) [small](#page-1-3) [2,](#page-1-5) [3,](#page-2-2) [10,](#page-9-2) [11,](#page-10-3) [12,](#page-11-2) [14,](#page-13-0) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [28,](#page-27-4) [29,](#page-28-2) [30,](#page-29-1) [31,](#page-30-0) [44,](#page-43-4) [45,](#page-44-2) [47,](#page-46-0) [48,](#page-47-3) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [span](#page-21-3) [22](#page-21-2) [split coequaliser](#page-37-0) [38,](#page-37-1) [39,](#page-38-2) [40,](#page-39-1) [56](#page-55-0) [split](#page-7-2) [8,](#page-7-3) [28,](#page-27-4) [36,](#page-35-1) [38,](#page-37-1) [54,](#page-53-1) [57](#page-56-4) [solution-set condition](#page-27-2) [28](#page-27-4) [solution-set](#page-27-2) [28,](#page-27-4) [31](#page-30-0) [subobject](#page-28-0) [29,](#page-28-2) [30,](#page-29-1) [31,](#page-30-0) [52,](#page-51-1) [55,](#page-54-3) [59](#page-58-2) [support](#page-56-0) [56,](#page-55-0) [57,](#page-56-4) [59](#page-58-2) [symmetric](#page-54-0) [55](#page-54-3) [terminal](#page-14-2) [15,](#page-14-5) [35](#page-34-1) [terminal object](#page-14-2) [15,](#page-14-5) [22,](#page-21-2) [24,](#page-23-2) [25,](#page-24-2) [56,](#page-55-0) [57,](#page-56-4) [59](#page-58-2) [topos](#page-54-2) [55](#page-54-3) [transitive](#page-54-0) [55](#page-54-3) [totally-supported](#page-56-0) [56,](#page-55-0) [57,](#page-56-4) [59](#page-58-2) [tv](#page-56-3) [58,](#page-57-1) [59](#page-58-2) [unit](#page-17-0) [17,](#page-16-3) [18,](#page-17-2) [25,](#page-24-2) [32,](#page-31-5) [33,](#page-32-2) [34,](#page-33-1) [35,](#page-34-1) [36,](#page-35-1) [39,](#page-38-2) [49,](#page-48-0) [55](#page-54-3)

[vertex](#page-20-1) [21,](#page-20-3) [22,](#page-21-2) [28,](#page-27-4) [45](#page-44-2) [well-copowered](#page-28-0) [29](#page-28-2) [weakly](#page-27-1) [28](#page-27-4) [well-powered](#page-28-0) [29,](#page-28-2) [30,](#page-29-1) [31,](#page-30-0) [54](#page-53-1) [well-supported](#page-56-0) [56,](#page-55-0) [57,](#page-56-4) [58,](#page-57-1) [59](#page-58-2) [ws](#page-56-2) [57](#page-56-4) [Yoneda embedding](#page-9-1) [10,](#page-9-2) [47](#page-46-0)