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1 Definitions and Examples

Definition 1.1 (Category). A category C consists of:

(a) a collection ob C of objects A,B,C, . . ..

(b) a collection mor C of morphisms f, g, h, . . ..

(c) two operations dom, cod from mor C to ob C: we write f : A→ B for “f is a morphism and
dom f = A and cod f = B”.

(d) an operation from ob C to mor C sending A to 1A : A→ A.

(e) a partial binary operation (f, g) 7→ fg on mor C, such that fg is defined if and only if
dom f = cod g, and in this case we have dom fg = dom g and cod fg = cod f .

These are subject to the axioms:

(f) f1A = f and 1Ag = g when the composites are defined.

(g) f(gh) = (fg)h whenever fg and gh are defined.

Remark 1.2.

(a) obC and morC needn’t be sets. If they are, we call C a small category.

(b) We could formalize the definition without mentioning objects, but we don’t.

(c) fg means “first g, then f”.

Example 1.3.

(a) Set = category of all sets and the functions between them. (Formally, a morphism of Set
is a pair (f,B) where f is a set-theoretic function, and B is its dodomain.)

(b) We have categories:

• Group of groups and group homomorphisms
• Rng of rings and homomorphisms
• Vectk of vector spaces over a field k

• and so on

(c) We have categories

• Top of topological spaces and continuous maps
• Met of metric spaces and non-expansive maps (i.e. f such that d(f(x), f(y)) ≤ d(x, y))
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• Mfd of smooth manifolds and C∞ maps

Also TopGp for topological groups and continuous homomorphisms, etc...

(d) We have a category Htpy with the same objects as Top, but morphisms X → Y are
homotopy classes of continuous maps.
In general, given C and an equivalence relation ≡ on mor C such that

f ≡ g =⇒ dom f = dom g and cod f = cod g

and
f ≡ g =⇒ fg ≡ gh and kf ≡ kg when the composites are defined

we can form a quotient category C/ ≡.

(e) The category Rel has the same objects as Set, but morphisms A → B are relations R ⊆
A×B, with composition defined by

R ◦ S = {(a, c) | (∃b)(a, b) ∈ S ∧ (b, c) ∈ R}.

We can also define the category Part of sets with partial functions.

(f) For any category C, the opposite category Cop has the same objects and morphisms as C but
dom and cod are interchanged and composition is reversed.
This yields a duality principle: if P is a true statement about categories, so is P ∗ obtained
by reversing arrows in P .

(g) A (small) category with one object ∗ is a monoid (a semigroup with an identity). In
particular, a group is a 1−object small category whose morphisms are all isomorphisms.

(h) A groupoid is a category whose morphisms are all isomorphisms. For example, the funda-
mental groupoid π1(X) os a topological space X has points of X as objects, and morphisms
x→ y are homotopy classes of paths from x to y (c.f. the fundamental group π1(X,x)).

(i) A discrete category is one whose only morphisms are identities. If C is such that for any pair
of objects (A,B) there is at most one morphism A → B then mor C becomes a reflexive,
transitive relation on ob C. We call such a C a preorder. In particular, a poset is a small
preorder whose only isomorphisms are identities.

(j) Given a field k, the category Matk has natural numbers as objects, and morphisms n→ p
are p× n matrices, with entries from k, and composition is matrix multiplication.

Lecture 2

Definition 1.4 (Functor). Let C and D be categories. A functor F : C → D consists of
mappings F : ob C → obD and F +mor C → morD such that:

• F (dom f) = domFf
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• F (cod f) = codFf

• F (1A) = 1FA

• F (fg) = (Ff)(Fg) whenever fg is defined.

We write Cat for the category of small categories and the functors between them.

Example 1.5.

(a) We have forgetful functors Gp → Set, Rng → Set, Top → Set, … or slightly more
interestingly, Rng→ AbGp, Met→ Top, TopGp→ Top, TopGp→ Gp, …

(b) The construction of free groups is a functor Set → Gp: given a set A, FA is the group
freely generated by A, such that every mapping A → G where G has a group structure
extends uniquely to a homomorphism FA → G. Given A

f→ B, we define Ff : FA → FB

to be the unique homomorphism extending A
f→ B ↪→ FB. Isf we also have B

g→ C, F (gf)

and (Fg)(Ff) are both homomorphisms extending A
f→ B

g→ C ↪→ FC.

(c) Given a set A, we define PA to be the set of subsets of A. Given f : A → B, we define
Pf : PA→ PB by Pf(A′) = f(a) | a ∈ A′ ⊆ B. So P is a functor Set→ Set.

(d) But we also have a functor P ∗ : Setop → Set (or Set → Setop): P ∗A = PA and, for
A

f→ B, G∗f : PB → PA is given by P ∗f(B′) = ainA | f(a) ∈ B′. We use the term
“contravariant functor C → D” for a functor C → Dop.

(e) Given a vector space V over k, we write V ∗ for the space of linear maps V → k. Given
f : V → W , we write f∗ : W ∗ → V ∗ for the mapping θ 7→ θf . This defines a functor
(•)∗ : Vectopk → Vectk.

(f) The mapping C 7→ Cop, F 7→ F defines a functor Cat→ Cat.

(g) A functor between monoids is a monoid homomorphism; a functor between posets is a
monotone map.

(h) Given a group G, a functor G→ Set is given by a set A equipped with a G-action (g, a) 7→
g · a, i.e. a permutation representation of G. Similarly, a functor G → Vectk is a k-linear
representation of G.

(i) The fundamental group construction is a functor Π1 : Top∗ → Gp, where Top∗ is the
category of topological spaces with basepoints, and morphisms being the continuous maps
which preserve the basepoints.

Definition 1.6 (Natural transformation). Given categories C and D, and two functors C F

G
D,

a natural transformation α : F → G assigns to each A ∈ ob C a morphism αA : FA → GA in
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D, such that for any A
f→ B in C, the square

FA FB

GA GB

Ff

αA αB

Gf

.

commutes (we call this square the naturality square for α at f). Given α as above, and β :
G→ H, we define βα : F → H by (βα)A = βAαA. We write [C,D] for the category of functors
C → D and natural transformations between them.

Example 1.7.

(a) Given a vector space V , we have a linear map αV : V → V ∗∗ sending v ∈ V to the linear
form θ 7→ θ(v) on V ∗∗. These maps define a natural transformation 1Vectk → (•)∗∗.

(b) There is a natural transformation α : 1Set → UF , where F is the free group functor and
U is the forgetful functor Gp → Set, whose value at A is the inclusion A ↪→ UFA. The
naturality square

A B

UFA UFB

f

αA αB

UFf

commutes by the definition of Ff .

(c) For any A, we have a mapping ηA : A → PA given by AηA(a) = {a}. This is a natural
transformation 1Set → P since Pf({a}) = {f(a)} for any a ∈ A.

(d) Given order-preserving maps P
f

g Q between posets, there exists a unique natural trans-
formation f → g if and only if f(p) ≤ g(p) for all P ∈ P .

(e) Given two group homomorphisms G
u

v H, a natural transformation u → v is given by
h ∈ H such that hu(g) = v(g)h for all g ∈ G, or equivalently u(g) = h−1v(g)h, i.e. u and v
are conjugate homomorphisms. In particular, the group of natural transformations u → u
is the centraliser of the image of u.

(f) If A and B are G-sets considered as functors G→ Set, a natural transformation f : A→ B
is a G-invariant map, i.e. f : A→ B such that gf(a) = f(ga) for all a ∈ A, g ∈ G.Lecture 3

(g) The Hurewicz homomorphism links the homotopy and homology groups of a space X.
Elements of πn(X,x) are homotopy classes of basepoint-preserving maps Sn f→ X. If we
think of Sn as ∂∆n+1, f defines a singular n-cycle on X and homotopic maps differ by an
n-boundary, so we get a well-defined map πn(X,x)

hn→ Hn(X). hn is a homomorphism, and
it’s a natural transformation πn → HnU , where U is the forgetful functor Top∗ → Top.

We have isomorphisms of categories: e.g. F : Rel → Relop defined by FA = A, FR = Ro = {(b, a) |

5



(a, b) ∈ R} is its own inverse.

But we have a weaker notion of equivalence of categories.

Lemma 1.8. Assuming that:

• α : F → G is a natural transformation between functors C D

Then α is an isomorphism in [C,D] if and only if αA is an isomorphism in D for each A.

Proof.

⇒ Obvious since composition in [C,D].

⇐ Suppose each αA has an inverse βA. Given A
f→ B in C, in the diagram

GA GB

FA FB

Gf

βA βB

Ff

αA αB

we have βB(Gf) = βB(Gf)αAβA = βBαB(Ff)βA = (Ff)βA.

Definition 1.9 (Equivalence of categories). Let C and D be categories. An equivalence between
C and D consists of functors F : C → D and G : D → C together with natural isomorphisms
α : 1C → GF , β : FG→ 1D. We write C ≡ D if there exists an equivalence between C and D.
We say P is a categorical property if

(C has P and C ≡ D) =⇒ D has P .

Example 1.10.

(a) The category Part of sets and partial functions is equivalent to Set∗ (the category of
pointed sets). We define F : Set∗ → Part by F (A, a) = A \ {a} and if f : (A, a)→ (B, b),
with (Ff)(x) = f(x) if f(x) 6= b and undefined otherwise. Then define G : Part → Set∗
by G(A) = (A ∪ {A}, A) and if f : A ⇁ B, then

Gf(x) =

{
f(x) if x ∈ A and f(x) is defined
B otherwise

.

Then FG = 1Part; GF 6= 1Set∗ , but there is an isomorphism 1Set∗ → GF . Note that
Part 6∼= Set∗.

(b) We have an equivalence fdVectk ≡ fdVectopk : both functors are (•)∗, and both isomor-
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phisms are α : 1fdVectk → (•)∗∗.

(c) We have an equivalence fdVectk ≡Matk: we define F : Matk → fdVectk by F (n) = kn,
F (n

A→ p) is the linear map kn → kp represented by A (with respect to standard bases).
TO define G, choose a basis for each V , and define G(V ) = dimV ,

G(V
f→W ) = matrix representing f with respect to chosen bases.

GF = 1Matk ; the choice of bases yields isomorphisms kdimV → V for each V , which form
a natural transformation FG→ 1fdVectk .

Definition 1.11 (Faithful / full / essentially surjective). Let F : C → D be a functor.

(a) We say F is faithful if, given f and g in mor C, (Ff = Fg, dom f = dom g, cod f =
cod g) =⇒ f = g.

(b) We say F is full if, for every g : FA→ FB in D, there exists f : A→ B in C with Ff = g.

(c) We say F is essentially surjective if, for any B ∈ obD, there exists A ∈ ob C with FA ∼= B.

Note that if F is full and faithfull, it’s essentially injective: given FA
g→∼= FB in D, the unique

A
f→ B with Ff = g is an isomorphism.

We say D ⊆ C is a full subcategory if the inclusion D → C is a full functor.

Lemma 1.12. Assuming that:

• F : C → D

Then F is part of an equivalence C ≡ D if and only if F is full, faithful, essentially surjective.

Proof.

⇒ Suppose give G, α and β as in Definition 1.9. Then βB : FGB → B witnesses the fact that F is
essentially surjective. If A

f

g B satisfy Fg = Fg, then GFf = GFg; but f = α−1
B (GFf)αA, so

f = g. Suppose given FA
g→ FB; then f = α−1

B (Gg)αA satisfies GFf = Gf but G is faithful for
the same reason as F , so Ff = g.

⇐ For each B ∈ obD, chose GB ∈ ob C and an isomorphism βB : FGB → B. Given B
g→ C, define

Gg : GB → GC to be the unique morphism such that FGg = β−1
C gβB . Functoriality follows from

uniqueness, and naturality of β. We define αA : A → GFA to be the unique morphism such that
FαA = β−1

FA : FA → FGFA. αA is an isomorphism, and naturality squares for α are mapped by
F to naturality squares for β−1, so they commute.

Lecture 4
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Definition 1.13 (Skeleton). By a skeleton of a category C, we mean a full subcategory con-
taining just one object from each isomorphism class.
We say C is skeletal if it’s a skeleton of itself.

Example. Matk is a skeletal category; it’s isomorphic to the skeleton of fdVectk consisting
of the spaces kn.

However, working with skeletal categories involves heavy use of the axiom of choice.

Definition 1.14 (Monomorphism / epimorphism). Let f : A→ B be a morphism in a category
C. We say f is a monomorphism (or monic) if, given C

g

h
A, fg = fh =⇒ g = h. We say f

is an epimorphism (or epic) if it’s a monomorphism in Cop.
We write A

f
� B to indicate that f is monic, and A

f
� B to indicate that it’s epic.

We say C is balanced if every arrow which is monic and epic is an isomorphism.

We will call a monic morphism e split if it has a left inverse (and similarly we may define the notion
of split epic).

Example 1.15.

(a) In Set, monic ⇐⇒ injective (⇐ obvious; for ⇒ consider morphisms {∗} → A). Also, epic
⇐⇒ surjective (⇐ obvious; for ⇒ consider morphisms B → {0, 1}).

(b) In Gp, monic ⇐⇒ injective (for ⇒ consider homomorphisms Z → G), and epic ⇐⇒
surjective (but ⇒ is quite non-trivial – it uses free products with amalgamation).

(c) In Rng, monic ⇐⇒ injective, but epic does not imply surjective (for example, consider
Z ↪→ Q).

(d) In Top, monic ⇐⇒ injective and epic ⇐⇒ surjective (as in Set) but Top isn’t balanced.

(e) In preorder, all morphisms are monic and epic, so a preorder is balanced if and only if it’s
an equivalence relation.
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2 The Yoneda Lemma

Definition 2.1 (Locally small). We say a category C is locally small if, for any two objects A
and B, the morphisms A→ B in C are parametrized by a set C(A,B).

If A is an object of a locally small category C, we have a functor C(A, •) : C → Set sending B to
C(A,B) and a morphism B

g→ C to the mapping (f 7→ gf) : C(A,B)→ C(A,C) (this is funcorial since
composition in C is associative).

Dually, we have C(•, B) : Cop → Set.

Lemma 2.2 (Yoneda). Assuming that:

• C is a locally small category

• A ∈ ob C

• F : C → Set a functor

Then

(i) There is a bijection between natural transformations C(A, •)→ F and elements of FA.

(ii) Moreover, this bijection is natural in A and F .

Proof.

(i) Given α : C(A, •)→ F , we define Φ(α) = αA(1A) ∈ FA.
Given x ∈ FA, we define Ψ(x) : C(A, •) → F by Ψ(x)B(f : A → B) = Ff(x) ∈ FB. This is
natural in B since F is a functor: given g : B → C we have

(Fg)Ψ(x)B(f) = (Fg)(Ff)(x) = F (gf)(x) = Ψ(x)C(gf).

For any x, ΦΨ(x) = Ψ(x)A(1A) = F1A(x) = x.
For any α, ΨΦ(α)B(f) = Ff(αA(1A)) = αB(C(A, f)(1A) = αB(f) for all f : A → B. So
ΨΦ(α) = α.

(ii) Later. Seeing examples of usage of (i) is interesting first.

Corollary 2.3. For a locally small category C, the assignment A 7→ C(A, •) is a full and faithful
functor Cop → [C,Set].

Proof. Substitute C(B, •) for F in Lemma 2.2(i): we have a bijection from C(B,A) to the collection of
natural transformations C(A, •)→ C(B, •).
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For a given f , the natural transformation C(f, •) sends g : B → C to gf , so this is functorial by
associativity of composition C.

Similarly, we have a full and faithful functor C → [Cop,Set] sending A to C(•, A). We call this the
Yoneda embedding: it allows us to regard any locally small category C as a full subcategory of a
Set-valued functor category.

Compare with Cayley’s Theorem in group theory (every group is isomorphic to a subgroup of a
permutation group) and ‘Dedekind’s Theorem’ (every poset is isomorphic to a sub-poset of a power
set).

Definition 2.4 (Representable). We say a functor F : C → Set is representable if it’s isomorphic
to a C(A, •) for some A. By a representation of F , we mean a pair (A, x) where x ∈ FA is such
that Φ(x) is an isomorphism. We call x a universal element of F .

Corollary 2.5. Suppose (A, x) and (B, y) are both representations of F . Then there is a unique
isomorphism A

f→ B such that (Ff)(x) = y.

Proof. (Ff)(x) = g is equivalent to saying that

C(B, •) C(A, •)

F

C(f,•)

Φ(y) Φ(x)

commutes, so f must be the unique isomorphism, whose image under Yoneda is Φ(x)−1Φ(y).

Lecture 5

Proof of Lemma 2.2(ii). Suppose for the moment that C is small, so that [C,Set] is locally small.
Given two functors C × [C,Set] → Set: the first sends an object (A,F ) to FA, and a morphism
(A

f→ A′, F
α→ F ′) to the diagonal of

FA FA′

F ′A F ′A′

Ff

αA α′
A

F ′f

.

The second is the composite

C × [C,Set] Y×1−→ [C,Set]op × [C,Set]op [C,Set](•,•)−→ Set

where Y is a Yoneda embedding. Then Φ and Ψ define a natural isomorphism between these two.
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In elementary terms, this says that if x ∈ FA, and x′ ∈ F ′A′ is its image under the diagonal, then
Ψ(x′) is the composite

C(A′, •) C(f,•)−→ C(A, •) Ψ(x)−→ F
α−→ F ′.

This makes sense without the assumption that C is small, and it’s true since the composite maps

1A 7→ f 7→ (Ff)(x) 7→ αA′(Ff)(x).

Example 2.6.

(a) The forgetful functor Gp → Set is represented by (Z, 1), Rng → Set is represented by
(Z[X], X), Top→ Set is represented by ({∗}, ∗).

(b) The functor P∗ : Setop → Set is represented by ({0, 1}, {1}). This is the bijection between
subsets of A and functions A

f→ {0, 1}, and it’s natural. But P : Set → Set is not
representable, since P ({∗}) isn’t a singleton.

(c) The functor Ω : Topop → Set sending X to the set of open subsets of X, and X
f→ Y to

f−1 : Ω(Y )→ Ω(X) is representable by the Sierpinski space Σ = {0, 1} with {1} open but
{0} not open. This works since continuous maps X → Ω are the characteristic functions of
open subsets of X.

(d) The functor (•)∗ : Vectk → Vectk isn’t representable, but its composite with Vectk → Set
is represented by k.

(e) For a group G considered as a 1-object category, the unique representable functor G→ Set
is the Cayley representation: G acting on itself by multiplication.

(f) Given two objects A,B in a locally small category C, we have a functor Cop → Set sending
C to C(C,A) × C(C,B). If this functor is representable, we call the representing object a
categorical product A × B and write (π1 : A × B → A, π2 : A × B → B) for the universal
element. Its defining property is that given any pair (f : C → A, g : C → B), there is a
unique isomorphism h : C → A×B such that πqh = f and π2h = g.
Dually, we have the notion of coproduct A + B with coprojections γ1 : A → A + B, γ2 :
B → A+B.

(g) Given a parallel pair A
f

g B in a locally small category C, we have a functor F : Cop → Set
sending C to {h : C → A | fh = gh} and defined on morphisms in the same way as C(•, A).

A representation of this functor is called an equaliser of (f, g): it consists of E e→ A satisfying
fe = ge, and such that any h with fh = gh factors uniquely as ek. Note that e is monic;
we call a monomorphism regular if it occurs as an equaliser.
Dually, we have the notions of coequaliser and regular epi.

In Set, products are just cartesian products (also in Gp, Rng, Top, …). coproducts in Set are disjoint
unions AqB = (A× {0}) ∪ (B × {1}). In Gp, coproducts are free products G ∗H.
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In Set, the equaliser of A
f

g B is the inclusion of {a ∈ A | f(a) = g(a)} and the coequaliser of (f, g)
is the quotient of B by the smallest equivalence relation containing {(f(a), g(a)) | a+A}.

Note that in Set, all monomorphisms and all epimorphisms are regular, but in Top, a monomorphism
X

f→ Y is regular if and only if X is topologised as a subspace of Y . An epimorphism X
f→ Y is

regular if and only if Y is topologised as a quotient of X.

Note that if f is both regular monic and regular epic, then it’s an isomorphism since the pair (g, h) of
which its equaliser must satisfy g = h.

Warning. The following terminology is not standard. These are usually (both!) referred to as
“generating”, but to avoid confusion, in this course we will refer to them with separete names.

Definition 2.7 (Separating / generating family). Let G be a family of objects of a locally small
category C.

(a) We say G is a separating family if the functors C(G, •), G ∈ G are jointly faithful, i.e. given
a parallel pair A

f

g B, the equations fh = gh for all h : G→ A with G ∈ G imply f = g.

(b) We say G is a detecting family if the G(G, •) jointly reflect isomorphisms, i.e. given A
f→ B,

if every G
g→ B with G ∈ G factors uniquely through f , then f is an isomorphism.

If G = {G}, we call G a separator or a detector.
Lecture 6

Lemma 2.8.

(i) If C has equalisers (i.e. every pair of parallel arrows has an equaliser), then any detecting
family in C is separating.

(ii) If C is balanced, then any separating family in C is detecting.

Proof.

(i) Suppose G is a detecting family, and suppose A
f

g B satisfy the hypothesis of Definition 2.7(a).
Let E

e→ A of (f, g): then any G
h→ A with G ∈ G factors uniquely through e, so e is an

isomorphism, so f = g.

(ii) Suppose G is separating, and A
f→ B satisfies the hypothesis of Definition 2.7(b). If C

g

h
A

satisfy fg = fh, then any G
k→ C with G ∈ G satisfies gk = hk, since both are factorisations of

fgk through f . So g = h; hence f is monic.

Similarly, if B l

m D satisfy lf = mf , then any G
n→ B satisfies ln = mn, since it factors through

f , so l = m and hence f is epic. Since C is balanced, f is an isomorphism.
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Example 2.9.

(a) In Set, 1 = {∗} is a separator and a detector, since Set(1, •) is isomorphic to the identity
functor. Also, 2 = {0, 1} is a coseparator and a codetector, since it represents P ∗ : Setop →
Set.

(b) In Gp (respectively Rng), Z (respectively Z[X]) is a separator and a detector, since it
represents the forgetful functor.
But Gp has no coseparator or codetector set: given any set G of groups, there is a simple
group H with cardH > cardG for all G ∈ G, so the only homomorphisms H → G with
G ∈ G are trivial.

(c) For any small category C, the set {C(A, •) | A ∈ ob C} is separating and detecting in [C,Set].
This uses Yoneda and Lemma 1.8 (for the detecting case).

(d) In Top, 1 is a separator since it represents U : Top→ Set. But Top has no detecting set
of objects: given a set G of spaces, choose κ > cardX for all X ∈ G, and let Y and Z be a
set of cardκ. Give Y the discrete topology and for Z, we set the closed sets be Z plus all
the subsets of cardκ. The identity Y → Z is continuous, but not a homeomorphism, but
its restriction to any subset of card < κ is a homeomorphism, so G can’t detect the fact
that f isn’t an isomorphism.

(e) Let G be the category whose objects are the ordinals, with identities plus two morphisms
α

f

g β whenever α < β with composition defined by ff = fg = gf = gg = f .

Then 0 is a detector for C: it can tell that 0
f

g α aren’t isomorphisms since neither factors
through the other, and if 0 < α < β it can tell that α

f

g β aren’t isomorphisms since
0

g→ β doesn’t factor through either.
But C has no separating set: if G is any set of ordinals, choose α > β for all β ∈ G and then
G can’t separate α

f

g α+ 1.

By definition, the functors C(A, •) : C → Set preserve monomorphisms, but they don’t always preserve
epimorphisms.

Definition 2.10 (Projective). We say an object P in a locally small category Cis projective if
C(P, •) preserves epimorphisms, i.e. if given

P

Q R

f

g

,

there exists h : P → Q with gh = f . Dually, P is injective if it’s projective in Cop.
If P satisfies this condition for all g in some class E of epimorphisms, we call it E-projective.

In [C,Set], we consider the class of pointwise epimorphisms, i.e. those α such that αA is surjective for

13



all A.

Corollary 2.11. functors of the form C(A, •) are pointwise projective in [C,Set].

Proof. Immediate from Yoneda; given

C(A, •)

Q R

α

β

with β pointwise epic, Φ(α) ∈ RA is βA(y) for some y ∈ QA, so βΨ(y) = α.

“[C,Set] has enough pointwise projectives”:

Proposition 2.12. Assuming that:

• C is small

• F : C → Set

Then there exists a pointwise epimorphism P � F where P is pointwise projective.

Proof. Set P =
∐

(A,x) C(A, •) where the disjoint union is over all pairs (A, x) with A ∈ ob C and
x ∈ FA. A morphism P → Q is uniquely determined by a family of morphisms C(A, •)→ Q. . Hence
P is pointwise projective, since all the C(A, •) are. But we have α : P → F whose (A, x)-th component
is Ψ(x) : C(A, •)→ F and this is pointwise epic since any x ∈ FA appears as Ψ(x)(1A).

Lecture 7
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3 Adjunctions

Definition 3.1 (Adjnction, D. Kan 1958). Let C and D be categories. An adjunction between
C and D consists of functors F : C → D and G : D → C together with, for each A ∈ ob C and
B ∈ obD, a bijection between morphisms FA→ B in D and morphisms A→ GB in C, which
is natural in A and B. (If C and D are locally small, this means that D(F•, •) and C(•, G•) are
naturally isomorphic functors Cop ×D → Set.)
We say F is left adjoint to G, or G is right adjoint to F , and we write (F a G).

Example 3.2.

(a) The free functor F : Set → Gp is left adjoint to the forgetful functor Gp
U→ Set. By

definition, homomorphisms FA→ G correspond to functions A→ UG; naturality in A was
built into the definition of F in Example 1.5(b) and naturality in G is immediate.

(b) The forgetful functor U : Top → Set has a left adjoint D, which equips a set A with its
discrete topology since any function A→ UX is continuous as a map DA→ X. U also has
a right adjoint I given by the ‘ìndiscrete’ topology.

(c) The functor ob : Cat → Set has a left adjoint D given by discrete categories, and a right
adjoint I: IA is the category with objects A and morphisms a → b for each (a, b). D also
has a left adjoint π0: π0C is the set of connected components of C, i.e. the quotient of ob C
by the smallest equivalence relation which identifies dom f with cod f for all f ∈ mor C.

(d) Given a set A, we can regard (•)×A as a functor Set→ Set. It has a right adjoint, namely
Set(A, •). Given f : B × A → C we can regard it as a function λf : B → Set(A,C) by
λf(b)(a) = f(b, a).
We call a category C cartesian closed if it has binary products as defined in Example 2.6(f)
and each (•)× A has a right adjoint (•)A. For example, Cat is cartesian clsosed, with DC

taken to be the [C,D].

(e) Let M = {1, e} be the 2-element monoid with e2 = e (and identity 1). We have a functor
F : Set → [M,Set] sending A to (A, 1A) and a functor G : [M,Set] → Set sending (A, e)
to {a ∈ A | ea = a}.
We have (F a G a F ): (F a G) since any f : M → (B, e) takes values in G(B, e) and any
g : (B, e) → FA is determined by its restriction to G(B, e) since g(b) = g(e, b). However,
note that this is not an equivalence of categories.

(f) Let 1 be the category with one object and one morphism (which must the identity on the
only object). A left adjoint for the unique functor C → 1 picks out an initial object of C,
i.e. an object such that there is a unique I → A for each A ∈ ob C. Dually, a right adjoint
for C → 1 ‘is’ a terminal object of C (a terminal object is an initial object in Cop).
Again, the example of Gp shows that these two can coincide.

15



(g) Suppose given A
f→ B in Set. We have order-preserving mappings Pf : PA → PB and

P ∗f : PB → PA, and (Pf a P ∗f since A′ ⊆ f−1B′ ⇐⇒ f(A′) ⊆ B′.

(h) Suppose given a relation R ⊆ A×B. We define (•)r : PA→ PB and (•)l : PB → PA by

(S)r = {b ∈ B | (∀a ∈ S)((a, b) ∈ R)}
(T )l = {a ∈ A | (∀b ∈ T )((a, b) ∈ R)}

These are contravariant functors and S ⊆ T l ⇐⇒ S × T ⊆ R ⇐⇒ T ⊆ Sr. We say (•)r
and (•)l are adjoint on the right.

(i) P ∗ : Setop → Set is self-adjoint on the right, since functions A → PB and functions
B → PA both correspond to relations R ⊆ A×B.

(j) (•)∗ : Vect∗k → Vectk is self-adjoint on the right, since linear maps V →W ∗ and W → V ∗

both correspond to bilinear maps V ×W → k.

Theorem 3.3. Assuming that:

• G : D → C is a functor

• for A ∈ ob C, let (A ↓ G) be the category whose objects are pairs (B, f) where B ∈ obD
and f : A → GB, and whose morphisms (B, f) → (B′, f ′) are morphisms g : B → B′

making
A GB

GB′

f

f ′ Gg

commute.

Then specifying a left adjoint for F is equivalent to specifying an initial object of (A ↓ G) for
each A.

Lecture 8

Proof. First suppose (F a G). For each A ∈ ob C, let ηA : A→ GFA be the morphism corresponding
to 1FA : FA → FA. Then (FA, ηA) is an initial object of (A ↓ G): given any f : A → GB, the
diagram

A GFA

GB

ηA

f
Gg

commutes if and only if g corresponds to f under the adjunction, by naturality of the adjunction
bijection.

So there’s a unique morphism (FA, ηA)→ (B, f) in (A ↓ G).

16



Conversely, suppose given in initial object (FA, ηA) in (A ↓ G) for each A. We make F into a
function C → D: given A

f→ B, Ff is the unique morphism (FA, ηA) → (FB, ηBf) in (A ↓ G).
Functoriality comes from uniqueness: given B

g→ C, (Fg)(Ff) and F (gf) are both morphisms
(FA, ηA) → (FC, ηCgf) in (A ↓ G). The adjunction bijection sends A

f→ GB to the unique mor-
phism (FA, ηA) → (B, f) in (A ↓ G), with inverse sending FA

g→ B to (Gg)ηA : A → GB. This is
natural in A since η is a natural transformation 1C → GF and natural in B since G is functorial.

Corollary 3.4. Suppose F and F ′ are both left adjoint to G : D → C. Then there is a canonical
natural isomorphism α : F → F ′.

Proof. (FA, ηA) and (F ′A, η′A) are both initial in (A ↓ G), so there’s a unique isomorphism αA between
them. α is natural: given A

f→ B, (F ′f)αA and αB(Ff) are both morphisms (FA, ηA)→ (F ′B, η′Bf)
in (A ↓ G), so they’re equal.

As a result of this, we will often talk about “the” left adjoint of a functor (when it exists), because we
don’t usually care about which one in the isomorphism class we use.

Lemma 3.5. Assuming that:

• C F

G
D H

K
E

• (F a G) and (H a K)

Then (HF a GK).

Proof. Given A ∈ ob C, C ∈ ob E , we have bijections between morphisms HFA → C, morphisms
FA→ KC, and morphisms A→ GKC which are both natural in A and C, D.

Corollary 3.6. Suppose
C D

E F

F

G H

K

is a commutative square of categories and functors, and suppose all the functors have left
adjoints. Then the square of left adjoints commutes up to natural isomorphism.

Proof. By Lemma 3.5, both ways round are left adjoint to HF = KG, so by Corollary 3.4 they’re
isomorphic.

17



We saw in Theorem 3.3 that an adjoint (F a G) gives rise to a natural transformation η : 1C → GF ,
called the unit of the adjunction. Dually, we have ε : FG→ 1D, the counit of (F a G).

Theorem 3.7. Assuming that:

• F : C → D and G : D → C are functors

Then specifying an adjunction (F a G) is equivalent to specifying a natural transformation
η : 1C → GF and ε : FG→ 1D satisfying the two commutative diagrams:

F FGF

F

Fη

1F
εF and

G FGF

F

ηG

1G
Gε

Proof. Suppose (F a G). We defined η in the proof of Theorem 3.3, and ε is defined dually. Since εFA

corresponds to 1GFA, the composite εFA(FηA) corresponds to 1GFAηA = ηA. But by definition 1FA

corresponds to ηA. The other identity is dual.

Conversely, suppose given η and ε satisfying the triangular identities. Given FA
f→ B, we define

Φ(f) = (Gf)ηA : A → GFA → GB. Dually, given A
g→ GB, we define Ψ(g) = εB(Fg). Then

ΨΦ(f) = Ψ((Gf)ηA) = εB(FGf)FηA = f(εFA)(FηA) = f , and dually ΦΨ(g) = g. Naturality of Φ
and Ψ follows from naturality of η and ε.

In Definition 1.9, we had natural isomorphisms α : 1C → GF and β : FG → 1D. These look like the
unit and counit of an adjunction (F a G): do they satisfy the triangular identities? No, but we can
always change them:

Proposition 3.8. Assuming that:

• F : C → D, G : D → C, α : 1C → GF and β : FG→ 1D be an equivalence of categories as
defined in Definition 1.9

Then there exist isomorphisms α′ : 1C → GF and β′ : FG → 1D satisfying the triangular
identities. In particular, (F a G a F ).

Proof. We define α′ = α and take β′ to be the composite

FG
(FGβ)−1

→ FGFG
(FαG)−1

→ FG
β→ 1D.

Note that FGβ = βFG, since
FGFG FG

FG 1D

FGβ

βFG β

β

18



commutes by naturality of β, and β is monic. Similarly, GFα = αGF .

To verify the triangular identities, consider

F FGF FGFGF

F FGF

F

Fα

1F

(βFGF )−1

F−1
α (FαGF )−1=(FGFα)−1

(βF )−1

1F
βF

which commutes by naturality of β−1.Lecture 9

For the second triangular identity, we have

G GFG GFGFG

G GFG

Gβ

αG

1G

(GFGβ)−1

α−1
G (GFαG)−1=(αGFG)−1

(Gβ)−1

1G
Gβ

.

Hence by Theorem 3.7 we have (F a G). But (β′)−1 and α−1 also satisfy the triangular identities for
and adjunction (G a F ).

Lemma 3.9. Assuming that:

• (F : C → D a G : D → C) an adjunction with counit ε

Then

(i) G is faithful if and only if ε is pointwise epic

(ii) G is full and faithful if and only if ε is an isomorphism

Proof.

(1) Given g : B → C in D, gεB corresponds to Gg under the adjunction. So εB epic if and only if G
acts injectively on morphisms with domain B and specified codomain. Hence εB epic for all B if
and only if G is faithful.

(2) Similarly, G full and faithful if and only if for all B and C composition with εB is a bijection
D(B,C) → D(FGB,C). This happens if and only if εb : FGB → B is an isomorphism for all
B.
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Definition 3.10 (Reflection). By a reflection, we mean an adjunction satisfying the conditions
of Lemma 3.9(ii). We say D ⊆ C is a reflective subcategory if it’s full and the inclusion D → C
has a left adjoint.

Example 3.11.

(a) AbGp is reflective in Gp: the left adjoint to the inclusion sends G to G/G′ where G′ is the
subgroup generated by commutators. Any homomorphism G → A with A abelian factors
uniquely through the quotient map G→ G/G′.

(b) Recall that a group G is torsion if all elements have finite order, and torsion free if its only
element of finite order is 1. In an abelian group A, the torsion leements form a subgroup At,
and A 7→ At is right adjoint to the inclusion tAbGp→ AbGp, since any homomorphism
B → A whose B is torsion takes values in At. Similarly, A 7→ A/At defines a left adjoint to
the inclusion tfAbGp→ AbGp.

(c) Let KHaus ⊆ Top be the full subcategory of compact Hausdorff spaces. KHaus is reflec-
tive in Top: the left adjoint is the Stone-Čech compactification β.

(d) Let Seq ⊆ Top be the full subcategory of sequential spaces, i.e. those in which all sequen-
tially closed sets are closed. The inclusion Seq → Top has a right adjoint sending X to
Xs, the same set as X with all sequentially closed sets declared to be closed. The identity
mapping Xs → X is (continuous, and) the counit of the adjunction.

(e) The category Preord of preordered sets is reflective in Cat: the reflection sends C to C/ '
where ' is the congruence identifying all paralell pairs in C.

(f) Given a topological space X, the poset Ω(X) of open subsets of X is coreflective in P(X),
since if U is open and A ⊆ X is arbitrary, we have U ⊆ A if and only if U ⊆ A◦ (recall ◦

denotes interior). Dually, the poset of closed subsets is reflective in P(X).
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4 Limits

Definition 4.1 (Diagram). Let J be a category (almost always small, and often finite). By a
diagram of shape J in a category C, we mean a functor D : J → C. The objects D(j), j ∈ ob J
are called vertices of D, and morphisms D(α), α ∈ mor J are called edges of D.

For example, if J is the category
• •

• •

,

a diagram of shape J is a commutative square in C.

If J is instead
• •

• •

,

then a diagram of shape J is a not-necessarily-commutative square.

Definition 4.2 (Cone, limit). Let D : J → C be a diagram. A cone over D consists of an
object A (its apex) together with morphisms λj : A → D(j) for each j ∈ ob J (the legs of the
cone) such that

A

D(j) D(j′)

λj λj′

D(α)

commutes for each α : j → j′ in J .
A morphism of cones (A, (λj | j ∈ ob J)) → (B, (µj | j ∈ ob J)) is a morphism f : A → B
such that µjf = λj for all j. We have a category Cone(D) of cones over D; a limit for D is a
terminal object of Cone(D).
Dually, a colimit for D is an initial cone under D.
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If ∆ : C → [J, C] is the functor sending A to the constant diagram with all vertices A then a cone over
D is a natural transformation ∆A→ D.

Also, Cone(D) is another name for (∆ ↓ D), defined as in Theorem 3.3op.

So by Theorem 3.3, C has limits for all diagrams of shape J if and only if ∆ has a right adjoint.Lecture 10

Example 4.3.

(a) Suppose J = ∅. If D : ∅ → C, then Cone(D) ∼= C, so a limit for D is a terminal object.

(b) If J = ••, a diagram of shape J is a pair A,B, and a cone over it is a span

C

A B

A limit for it is a categorical coproduct

A×B

A B

π1 π2

Dually, a colimit for it is a coproduct

A B

A+B
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(c) If J is a (small) discrete category, a (co)limit for (Aj | j ∈ J) is a (co)product
∏

j∈J Aj

(
∑

j∈J Aj).

(d) If J is • •, then a diagram of shape J is a parallel pair A
f

g B. A cone over it consists
of

C

A B

h k

satisfying fh = k = gh, or equivalently of C
h→ A satisfying fh = gh. So a limit for

A
f

g B is an equaliser for (f, g), as defined in Example 2.6(g).

(e) If J is
•

• •
then a diagram of shape J is a cospan

A

B C

f

g

A cone over it has 3 legs, but if we omit the (redundant) middle one, it’s a span

D A

B

h

k

completing the cospan to a commutative square.
A limit for

A

B C

f

g

is called a pullback for (f, g). If C has binary products and equalisers, we can construct
pullbacks by forming the equaliser A × B

fπ1

gπ2
C. Dually, colimits of shape Jop are called

pushouts.

(f) If M = {1, e} is the 2-element with e2 = e, a diagram of shape M is an object A equipped
with an idempotent A

e→ A. A limit (respectively colimit) for (A, e) is the monic (respec-
tively epic) part of a splitting of e.

Note that the functor Set
F→ [M,Set] in Example 3.2(e) is ∆, so this explains the coinci-

dence of left and right adjoints.
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(g) Suppose J = N is the ordered set of natural numbers. A diagram of shape N is a direct
sequence

A0 → A1 → A2 → A3 → · · · ,

and a colimit for it is called a direct limit A∞.
Dually, we have inverse sequences

· · · → A2 → A1 → A0,

and their limits are called inverse limits.
For example in topology, an infinite dimensional CW-complex X is the direct limit of its
n-skeletons Xn. In algebra, the ring of p-adic integers is the limit of the inverse sequence

· · · → Z/p3Z→ Z/p2Z→ Z/pZ→ {0}

in Rng.

Proposition 4.4. Assuming that:

• C a category

Then

(i) If C has equalisers and all small products (including empty product), then C has all small
limits.

(ii) If C has equalisers and all finite products (including empty product), then C has all finite
limits.

(iii) If C has pullbacks and a terminal object, then C has all finite limits.

Proof.

(i) & (ii) Let D : J → C be a diagram. Form the products

P =
∏

j∈ob J

D(j)

Q =
∏

α∈mor J

D(codα)

We have morphisms P
f

g Q defined by παf = πcodα and παg = D(α)πdomα for all α. Let
e

e→ P be an equaliser for (f, g). The morphisms λj = πje : E → P → D(j) form a cone
over D, since for any α : j → j′ we have

D(α)λj = D(α)πje = παge = παfe = πj′e = λj′.
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It is a limit: given any cone (A, (µj | j ∈ ob J)) over D, the µj form a cone over the discrete
diagram with vertices D(j), so they induce a unique µ : A → P . Then fµ = gµ since the
µjs form a cone over D, so µ factors uniquely as eν, and ν is the unique factorisation of
(µj | j ∈ ob J) through (λj | j ∈ ob J).

(iii) If 1 is a terminal object of C, then we can construct A×B as the pullback of

A

B 1

Then we can construct
∏n

i=1 Ai as A1 × (A2 × (· · · ×An) · · · )).

To form an equaliser of A
f

g B, consider the pullback of

A

A A×B

(1A,f)

(1A,g)

Any cone
C A

A

h

k

over this has h = k = π1(1A, g)k = π1(1A, f)h. So a limit cone has the universal property
of an equaliser for (f, g).

Definition 4.5 (Limit preserving / reflecting / creating). Let F : C → D be a functor.

(a) We say F preserves limits of shape J if, given D : J → C and a limit cone (L, (λj | j ∈ ob J))
for it, (FL, (Fλj | j ∈ ob J)) is a limit for FD : J → D.

(b) We say F reflects limits of shape J if given D : J → C, any cone over D which maps to a
limit cone in D is a limit in C.

(c) We say F creates limits of shape J if, given D : J → C and a limit cone (L, (λj | j ∈ ob J))
over FD, there exists a cone over D whose image under F is ∼= (L, (λj)), and any such cone
is a limit in C.

Lecture 11
We say a category C is complete if it has all small limits.

Corollary 4.6. In each of the statements of Proposition 4.4, we may replace ‘C has’ by either
‘D has and G : D → C preserves’ or ‘C has and D → C creates’.

Proof. Exercise.
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Example 4.7.

(a) The functor Gp → Set creates all small limits: given a family of groups {Gi | i ∈ I},
there’s a unique structure on

∏
i∈I Gi making the projections into homomorphisms, and

it’s a product in Gp. Similarly for equalisers. But Gp → Set doesn’t preserve or reflect
coproducts.

(b) The forgetful functor Top → Set preserves small limits and colimits, but doesn’t reflect
them.

(c) The inclusion AbGp→ Gp reflects coproducts, but doesn’t preserve them.
A coproduct A∗B in Gp is nonabelian if both A and B are nontrivial. So the only cones in
AbGp thot could map to coproduct cones in Gp are those where either A or B is trivial.
But if A = {1} then A×B ∼= B in either category.

(d) If D is a reflective subcategory of C, the inclusion D → C creates any limits which exist.

Given D : J → D and a limit cone (L, (xj | j ∈ ob J)) for it in C, the morphisms FL
Fxj→

FD(j)
η−1
D(j)→ D(j) (where F is the left adjoint, and η is the unit) form a cone over D, so

they induce a unique u : FL → L. Now uηL : L → L is 1L since it’s a factorisation of
the limit through itself. So ηLuηL = ηL, i.e. ηLu is a factorisation of ηL through itself, so
ηLu = 1FL. So the η−1

D(j)(Fλj) form a limit cone in C, and hence in D.

(e) If D has limits of shape J , so does [C,D] for any C, and the forgetful functor [C,D]→ Dob C

creates them (strictly).
Given D : J → [C,D], we can regard it as a functor J ×C → D. For each A ∈ ob C, D(•, A)
is a diagram of shape J in D, so has a limit (LA, (λj,A : LA→ D(j, A) | j ∈ ob J)). Given
f : A→ B in C, the composites LA

λj,A→ D(j, A)
D(j,f)→ D(j, B) form a cone over D(•, B), so

induce a unique Lf : LA → LB. Functoriality of L follows fro uniqueness, and this is the
unique way of making L into a functor which lifts the λj,• to a cone in [C,D].
The fact that it’s a limit cone is straightforward.

Remark 4.8. In any category, A f→ B is monic if and only if

A A

A B

1A

1A f

f

is a pullback. Hence, if D has pullbacks, then any monomorphism in [C,D] is pointwise monic,
since its pullback along itself is contsructed pointwise.
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Lemma 4.9. Assuming that:

• G : D → C has a left adjoint

Then G preserves all limits which exist in D.

Proof 1. Suppose (F a G), and suppose C and D have limits of shape J . Then the diagram

C D

[J, ”C”] [J, ”D”]

F

∆ ∆

[J,F ]

commutes, and all the functors in it have right adjoints, so

[J, ”D”] [J, ”C”]

D C

[J,G]

limJ

G

commutes up to isomorphism by Corollary 3.6.

Proof 2. Suppose given D : J → D and a limit cone (L, (λj | j ∈ ob J)) over it. Give a cone
(A, (µj : A→ GD(j))) over GD, the transposes µj : FA→ D(j) form a cone over D by naturality of
the adjunction, so induce a unique µ : FA→ L such that λjµ = µj for all j.

Then µ : A→ GL is the unique morphism satisfying (Gλj)µ = µj for all j.

Lemma 4.10. Assuming that:

• J a diagram shape

• D has all limits of shape J

• G : D → C preserves all limits of shape J

Then for each A ∈ ob C, (A ↓ G) has limits of shape J and the forgetful functor (A ↓ G)
U→ D

creates them.

Proof. Suppose given D : J → (A ↓ G); write D(j) = (UD(j), fj : A→ GUD(j)) and let (L, (λj | j ∈
ob J)) be a limit for UD. Since the edges of D are morphisms in (A ↓ G), the fj form a cone over
GUD, so there’s a unique f : A→ GL satisfying (Gλj)f = fj for all j.

So (L, f) is the unique lifting of L to an object of (A ↓ G) which makes the λj into morphisms (L, f)→
(UD(j), fj) in (A ↓ G). The fact that these morphisms form a limit cone is straightforward.
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Lecture 12
Can we represent an initial object as a limit?

Lemma 4.11. Assuming that:

• C a category

Then specifying an initial object of C is equivalent to specifying a limit for 1C : C → C.

Proof. First suppose I is initial. The unique morphisms I → A, A ∈ ob C, form a cone over 1C , and it’s
a limit cone since if (A, (fB : A→ B | B ∈ ob C)) is any cone over 1C , then fI is its unique factorisation
through the one with apex I.

Conversely, suppose given a limit (I, (fA : I → A | A ∈ ob C)) for 1C . Then I is weakly initial (i.e. it
admits morphisms to every object of C); and if g : I → A then gfI = fA. In particular, fAfI = fA for
all A, so fI is a factorisation of the limit cone through itself, so fI = 1I and I is initial.

The ‘primitive’ Adjoint Functor Theorem follows from Lemma 4.10, Lemma 4.11 and Theorem 3.3.
But it only applies to preorders (see Example Sheet).

Theorem 4.12 (General Adjoint Functor Theorem). Assuming that:

• D is complete and locally small

Then G : D → C has a left adjoint if and only if G preserves small limits and satisfies the
solution-set condition: for every A ∈ ob C, there’s a set {(Bi, fi) | i ∈ I} of objects of (A ↓ G)
which is collectively weakly initial.

Proof.

⇒ G preserves limits by Lemma 4.9, and {(FA, ηA)} is a singleton solution-set for each A.

⇐ By Lemma 4.10, the categories (A ↓ G) are complete, and they’re locally small since D is.
So we need to show: if A is complete and locally small, and has a weakly initial set {Ai | i ∈ I},
then it has an initial object. First form P =

∏
i∈I Ai; then P is weakly initial. Now form the limit

of the diagram with vertices P and P ′, with the morphisms P → P ′ being all endomorphisms of
P .
Writing I

i→ P for this, I is still weakly initial. Suppose given I
f

g B; let E
e→ I be their

equaliser. There exists some h : P → E. Now ieh : P → P , but we also have 1P : P → P , so
i = 1P i = iehi. But i is monic, so we get ehi = 1I , so e is split epic, and hence f = g.

Example 4.13.

(a) Consider the forgetful functor U : Gp → Set. Gp has and U preserves all small limits by
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Example 4.7(a), and Gp is locally small. Given A, any A
f→ UG factors through A→ UG′

where G′ is the subgroup generated by {f(a) | a ∈ A}. Also cardG′ ≤ max{ℵ0, cardA}.
Let B be a set of this cardinality: considering all subsets B′ ⊆ B, all group structures on
B′ and all functions A→ B′, we get a solution-set at A.

(b) Let CLat be the category of complete lattices (posets with all joins and all meets). U :
CLat→ Set creates limits just like U : Gp→ Set.
In 1965, A. Hales showed that there exist arbitrarily large complete lattices generated by 3
element subsets, so the solution-set condition fails for A = {a, b, c}.
Now also that CLat doesn’t have a coproduct for 3 copies of {0, a, 1}.

Definition 4.14 (Subobject). By a subobject of A ∈ ob C, we mean a monomorphism A′ � A.
We order subobjects by (A′ � A) ≤ (A′′ � A) if there exists

A′ A′′

A

We write SubC(A) for this preorder.
We say C is well-powered if every Sub C(A) is equivalent to a small preorder.

For example, Set is well-powered since the inclusions A′ ⊆ A form a representative set of subobjects of
A. It is well-copowered since isomorphism classes of epimorphisms A � B correspond to equivalence
relations on A.

Lemma 4.15. Assuming that:

• a pullback diagram
P A

B C

h

k f

g

where f is monic

Then k is monic.

Proof. Suppose given D
l

m P with kl = km. Then fhl = gkl = gkm = fhm, but f is monic so
hl = hm. So l and m are both factorisations of

D A

B

hl

kl
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through the pullback, and hence l = m.

Theorem 4.16 (Special Adjoint Functor Theorem). Assuming that:

• C and D are locally small

• D is complete and well-powered

• D has a coseparating set of objects

Then G : D → C has a left adjoint if and only if it preserves all small limits.
Lecture 13

Proof.

⇒ is Lemma 4.9.

⇐ Let A ∈ ob C. As in Theorem 4.12, (A ↓ G) inherits completeness and locally smallness from
D: it also inherits well-poweredness since subobjects of (B, f) in (A ↓ G) are those B′ m

� B

in D such that f factors through GB′ Gm
� GB. (Note that the forgetful functor (A ↓ G) → D

preserves monomorphisms by Remark 4.8). And if {Si | i ∈ I} is a coseparating set for D, then
{(Si, f) | i ∈ I, f ∈ C(A,GSi)} is a coseparating set for (A ↓ G).
So we need to show: if A is complete, locally small and well-powered and has a coseparating set
{Si | i ∈ I}, then A has an initial object. First form P =

∏
i∈I Si; now consider the limit of the

diagram
P ′′ P ′

P (n) P

whose edges are a representative set of subobjects of P .
If I is the apex of the limit cone, the legs I → P ′ of the limit cone are all monic by the argument
of Lemma 4.15, and in particular I → P is monic, and it’s a least subobject of P .

If we had I
f

g A, their equaliser E → I would be a subobject of P contained in I � P , so E → I
is an isomorphism, and hence f = g.
Given any A ∈ obA form the product Q =

∏
(i,f) Si over all pairs (i, f) with fiA → Si and the

morphism g : A → Q with π(i,f)g = f for all (i, f). Since the Si are coseparating, g is monic. We
also have h : P → Q defined by π(i,f)h = πi for all (i, f).
Form the pullback

B A

P Q

k

l g

h
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then l is monic by Lemma 4.15, so I � P factors as I → B
l
� P and hence we have I → B

k→ A.
So I is initial.

Example 4.17. Consider the inclusion KHaus
I→ Top. Tychonoff’s Theorem says KHaus is

closed under (small) products in Top. It’s closed under equalisers, since equalisers of pairs in
KHaus are closed inclusions.
So KHaus is complete, and I preserves limits. KHaus and Top are locally small, and KHaus
is well-powered since subobjects of X is isomorphic to inclusions of closed subspaces. And
KHaus has a coseparator [0, 1], by Uryson’s Lemma.
So by Theorem 4.16, I has a left adjoint β.

Remark 4.18.

(a) The construction in Theorem 4.16 is closely parallel to Čech’s original construction of β.
Given a space, Čech constructs P =

∏
f :x→[0,1][0, 1] and the map g : X → P defined by

πfg = f . Then he takes βX to be the closure of the image of g, i.e. the smallest subobject
of (P, g) in (X ↓ I).

(b) We could have constructed β using Theorem 4.12: to get a solution-set for I at an object
X of Top, note that any continuous f : X → IY factors as X → IY ′ → IY where Y ′ is the
closure of the image of f , and then since Y ′ has a dense subspace of cardinality ≤ cardX,
we have cardY ′ ≤ 22

cardX .
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5 Monads

Suppose we have C
F

G
D, (F a G). How much of the adjunction can we describe in terms of C

(supposing we can’t know anything about D, or know very little about it)?

We have:

• The functor T = GF : C → C.

• The unit η : 1C → T .

• The natural transformation µ = GεF : TT → T .

From the triangular identities of Theorem 3.7, we obtain the commutative triangles:

(1) :

T TT

T

Tη

1T
µ (2) :

T TT

T

ηT

1T
µ

and from naturality of ε we obtain

(3) :

TTT TT

TT T

Tµ

µT µ

µ

Definition 5.1 (Monad). A monad on a category C is a triple (T, η, µ) = T where T : C → C,
and η : 1C → T and µ : TT → T satisfy the commutative diagrams (1), (2) and (3) above.

Example 5.2.

(a) Let M be a monoid. The functor M × (•) : Set → Set has a monad structure: ηA : A →
M ×A is a 7→ (1, a) and µA : M ×M ×A→M ×A sends (m,m′, a) to (mm′, a). The three
diagrams ‘are’ the unit and associative laws in M .

(b) The functor P : Set→ Set has a monad structure: the unit ηA : A→ PA is the mapping
a 7→ {a} (Example 1.7(c)) and the multiplication µA : PPA → PA sends a set of subsets
of A to their union.

Lecture 14
Does every monad come from an adjunction?

Answered by Eilenberg-Moore and by Kleisli (1965).

Note that the monad of Example 5.2(a) is induced by Set
M×(•)

U
[M,Set] and that of Example 5.2(b)

is induced by Set
P

U
CSLatt, where CSLatt is the category of complete semilattices (posets, with
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arbitrary joins). The free complete semilattice on A is P(A): every f : A → US extends uniquely to
f : P(A)→ S where f(A′) =

∨
{f(a) | a ∈ A′}.

An M -set (respectively a complete semilattice) is a set A equipped with a suitable mapping M×A→ A

(respectively P(A)
∨→ A).

Definition 5.3 (Eilenberg-Moore algebra). Let T = (T, η, µ) be a monad on C. By an Eilenberg-
Moore algebra for T we mean a pair (A,α) where A ∈ ob C and α : TA→ TA satisfies

(4) :

A TA

A

ηA

1A
α (5) :

TTA TA

TA A

Tα

µA α

α

A homomorphism f : (A,α)→ (B, β) is a morphism f : A→ B satisfying

(6) :

TA TB

A B

Tf

α β

f

We write CT for the category of T-algebras and homomorphisms.

Proposition 5.4. Assuming that:

• C a category

• T a monad

Then the forgetful functor CT GT

→ C has a left adjoint FT, and the adjunction induces the monad
T.

Proof. We define FTA = (TA, µA) (an algebra by (2) and (3)) and FT(A
f→ B) = Tf (a homomor-

phism by naturality of µ). Clearly, FT is functorial and GTFT = T .

We establish the adjunction using Theorem 3.7: its unit is η, and the counit ε(A,α) is just α (a
homomorphism FTA→ (A,α), by (5), and natural by (6)).

The triangular identity
FT FTGTFT

FT
1
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is just (1), and
GT GTFTGT

GT
1

is (4).

Finally, GεF TA = µ by definition of FTA. So the adjunction induces (T, η, µ).

Note: C F

G
D induces T, we can replace D by its full subcategory on objects FA.

So in trying to construct D, we may assume F is surjective (indeed, bijective) on objects. The
morphisms FA→ FB in D must correspond to morphisms A→ GFB = TB in C.

Definition 5.5 (Kleisli category). Let T be a monad on C. The Kleisli category CT is defined
by ob CT = ob C, morphsims A

f→B in CT are morphisms A
f→ TB in C. The identity A→A is

A
ηA→ TA, and the composite of A f→B

g→C is A
f→ TB

Tg→ TTC
µC→ TC.

For the unit and associative laws, consider the diagrams

A TB TTB

TB

f TηB

1TB

µB

A TA

TB TTB

TB

µA

f Tf

ηTB

1TB

µB

A TB TTC TTTD TTD

TC TTD TD

f Tg TTh

µC

TµD

µTD µD

Th µD

Proposition 5.6. Assuming that:

• C a category

• T a monad

Then there is an adjunction C
F T

GT
CT inducing the monad T.
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Proof. We define FTA = A and FT(A
f→ B) = A

f→ B
ηB→ TB. FT preserves identities by definintion,

and preserves composition by

A B TB

C TC TTC

TC

f

gf

1B

g Tg

ηC T1C

1TC

µC

We define GTA = TA, and GT(A
f→B) = TA

Tf→ TTB
µB→ TB. GT preserves identities by (1), and

preserves composites by

TA TTB TTTC TTC

TB TTC TC

Tf TTg

µB

TµC

µTC µC

Tg µC

We verify the adjunction using Theorem 3.7: GTFT(f) = Tf by (1) so GTFT = T and we take η as
unit of the adjunction.

We define TA
εA→A to be TA

1TA→ TA. To verify the naturality square

TA TB

A B

F TGTf

εA εB

f

the lower composite is TA Tf→ TTB
µB→ TB and the upper one is TA Tf→ TTB

µB→ TB
ηTB→ TTB

µB→ TB,
which agree since (2) tells us that µBηTB = 1B .

The triangular identities become

FTA FGFA FA
F TηA εFA = TA TTA TTTA TTA

ηTA ηTTA

1TTA

ηTA

and
GA GFGA GA

ηGA GεA = TA TTA TA
ηTA

1TA

ηTA

Finally, GTεF TA = µA, so (FT a GT) induces the monad T.

Lecture 15
Given a monad T on C, we write Adj(T) for the category whose objects are adjunctions (C F

G
D)

inducing T, and morphisms (C F

G
D) → (C F ′

G′ D′) are functors D K→ D′ satisfying KF = F ′ and
G′K = G.
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Theorem 5.7. The Kleisli adjunction (C CT) is an initial object of Adj(T), and the
Eilenberg-Moore adjunction (C CT is terminal.

Proof. Suppose given (C F

G
D) in Adj(T). We define K : D → CT by KB = (GB,GεB) (an algebra by

one of the triangular identities for η and ε, and naturality of ε), K(B
g→ B′) = Gg (a homomorphism

by naturality of ε). K is functorial since G is, GTK = G is obvious, and KFA = (GFA,GεFA) =
(TA, µA) = FTA.

So K is a morphism of Adj(T).

Suppose K ′ : D → CT is another such: then we must have K ′B = (GB, βB) where β : GFG → G is
a natural transformation since K ′g = Gg is a homomorphism K ′B → K ′B′ for all g : B → B′. Also,
since K ′F = FT, we have βFA = µA = GεFA for all A.

For any B, we have naturality squares

GFGFGB GFGB

GFGB GB

GFGεB

GεFGB βFGB GεB βB

GεB

whose left edges are equal, and whose top edge is split epic, so we obtain GεB = βB for all B. So
K ′ = K.

We define H : CT → D by HA = FA and H(A
f→B) = FA

Ff→ FGFB
εFB→ FB. H preserves identities

and satisfies HFT = F , by the first triangular identity for η and ε.

H preserves the composite A
f→B

g→C by

FA FGFB FGFGFC FGFC

FB FGFC FC

Ff FGFg

εFB

FGεFC

εFGFC εFC

Fg εFC

Also GHA = GFA = TA = GTA and

GH(A
f→B) = (TA

Tf→ TTB
µB→ TB) = GT(A

f→ B).

So H is a morphism of Adj(T). Note that H is full and faithful, since it sends A
f→ GFB to its

traspose across (F a G).

If H ′ : CT → D is any morphism of Adj(T), we must have H ′A = FA = HA for all A, and since
GH ′ = GT and the adjunctions have the same unit, H ′ must send the transpose A

f→B of A f→GFB to
its transpose across (F a G). So H ′ = H.

CT has coproducts if C does, but has few other limits or colimits. In contrast, we have:

36



Proposition 5.8. Assuming that:

• T a monad on C

Then

(i) The forgetful functor GT : CT → C creates all limits which exist in C.

(ii) If C has colimits of shape J , then GT creates colimits of shape J if and only if T preserves
them.

Proof.

(i) Suppose given D : J → CT; write D(j) = (GD(j), δj), and let (L, (λj : L → GD(j) | j ∈ ob J))

be a limit for GD. The composites TL
Tλj→ TGD(j)

δj→ GD(j) form a cone over GB. So they
induce a unique λ : TL→ L. And λ is a T-algebra structure on L, since the identities ληL = 1L
and λ(Tλ) = λµL follow from uniqueness of factorisations through limits and it’s the unique
lifting of the limit cone in C to a cone in CT. The fact that it’s a limit cone is straightforward.

(ii) If GT creates colimits then it preserves them, but so does FT since it’s a left adjoint, so T preserves
them too.

Conversely, given D : J → CT and a colimit cone (GD(j)
λj→ L | j ∈ ob J) under GD, we need to

know that (TGD(j)
Tλj→ TL | j ∈ ob J) is a colimit cone to obtain TL

λ→ L (and that TTL is a
colimit to verify that λ is a T-algebra structure). Otherwise, the argument is as before.

Given (C F

G
D), (F a G), how can we tell when K : D → CT is part of an equivalence?

Note: H : CT → D is an equivalence if and only if F is essentially surjective.

We call (F a F ) (or the functor G) monadic if K : D → CT is part of an equivalence.
Lecture 16

Lemma 5.9. Assuming that:

• C F

G
D is an adjunction inducing the monad T on C

• for every T algebra (A,α), the pair FGFA
Fα

εFA
FA has a coequaliser in D

Then K : D → CT has a left adjoint L.

Proof. Write FA
λ(A,α)→ L(A,α) for the coequaliser. For any homomorphism f : (A,α) → (B, β) the
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two left hand squares in

FGFA FA L(A,α)

FGFB FB L(B, β)

Fα

εFA

FGFf

λ(A,α)

Ff Lf

Fβ

εFB

λ(B,β)

commute, so we get a unique Lf making the right hand square commute. As usual, uniqueness implies
functoriality of L.

For any B ∈ obD, morphisms L(A,α) → B correspond to morphisms FA
f→ B satisfying f(Fα) =

fεFA. If f : A→ GB is the transpose of f across (F a G), then f(Fα) transposes to fα : GFA→ GB,
whereas fεFA transposes to Gf . But we can write f = εB(Ff) by the proof of Theorem 3.7, so
Gf = (GεB)(GFf). So f(Fα) = fεFA if and only if

GFA GFGB

A GB

GFf

α GεB

f

commutes, which happens if and only if f : (A,α)→ KB in CT.

Naturality of the bijection follows from that of f 7→ f .

Note that since GTK = G, we have LFT ∼= F by Corollary 3.6, and L preserves coequalisers.

Definition 5.10 (Reflexive / split coequaliser diagram).

(a) We say a parallel pair A
f

g B is reflexive if there exists r : B → A with fr = gr = 1B .
Note that FGFA

Fα

εFA
FA is reflexive, with common right inverse FA

FηA→ FGFA.

(b) By a split coequaliser diagram, we mean a diagram

A B C
f

g

h

t
s

satisfying hf = hg, hs = 1C , gt = 1B and ft = sh. If these hold, then h is a coequaliser of
(f, g) since if B k→ D satisfies kf = kg then k = kgt = kft = ksh, so k factors through h,
and the factorisation is unique since h is (split) epic. Note that any functor preserves split
coequalisers.

(c) Given G : D → C, we say a pair A
f

g B in D is G-split if there’s a split coequaliser diagram

GA GB C
Gf

Gg

h

t
s

38



in C. The pair (Fα, εFA) in Lemma 5.9 is G-split, since

GFGFA GFA A
GFα

GεFA

α

ηGFA

ηA

is a split coequaliser diagram in C.

Theorem 5.11 (Precise Monadicity Theorem). A functor G : D → C is monadic if and only if
G has a left adjoint and creates coequaliser of G-split pairs in D.

Theorem 5.12. Assuming that:

• G : D → C preserves reflexive coequalisers

• G has a left adjoint

• G reflects isomorphisms

Then G is monadic.

Proof.

(5.11, ⇒) Necessity of F a G is obvious. For the other condition, it’s enough to show that GT :
CT → C creates coequalisers of GT-split pairs. This is a re-run of Proposition 5.8(ii):
if (A,α)

f

g (B, β) are such that

A B C
f

g

h

t
s

is a split coequaliser diagram, the coequaliser is preserved by T and by TT , so C

acquires a unique algebra structure TC
γ→ C making h a homomorphism, and h is

a coequaliser in CT.

(5.11 ⇐ and 5.12) Either set of hypotheses implies that D has the coequalisers needed for Lemma 5.9,
so K has a left adjoint L. So we need to show that the unit and counit of (L a K)
are isomorphisms.
The unit (A,α) → KL(A,α) is the factorisation of Gλ(A,α) : GFA → GL(A,α)

through the (GT-split) coequaliser GFA
α→ A of GFGFA

GFα

GεFA
GFA. But either

set of hypothesis implies that G preserves the equaliser of (Fα, εFA), so this fac-
torisation is an isomorphism.
The counit LKB → B is the factorisation of FGB

εB→ B through the coequaliser of
FGFGB

FGεB

εFGB
FGB. The hypotheses of Theorem 5.11 imply that εB is a coequaliser
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of this pair, so the counit is an isomorphism. Those of Theorem 5.12 imply that
the factorisation is mapped to an isomorphism by G, so it’s an isomorphism.

Remark 5.13.
(1) Reflexive coequalisers are colimits of shape J , where J is the category

A B
f

g

s

t

r

satisfying fr = gr = 1, rf = s and rg = t.

(2) All colimits can be constructed from coproducts and reflexive coequalisers. This was proved
in Proposition 4.4: the pair P

f

g Q appearing in that proof is coreflexive with common
left inverse r : Q→ P defined by πjr = π1j for all j.Lecture 17

(3) If A
f

g B is reflexive, then in any commutative square

A B

B C

f

g h

k

we have h = hfr = kgr = k. So a pushout for

A B

B

f

g

is a coequaliser for A
f

g B.

(4) In Set, or more generally in a cartesian closed category, if Ai

fi

gi
Bi

hi→ Ci (i = 1, 2) are
reflexive coequalisers, then A1×A2

f1×f2

g1×g2
B1×B2

h1×h2→ C1×C2 is also a coequaliser. To see
this, consider

A1 ×A2 A1 ×B2 A1 × C2

B1 ×A2 B1 ×B2 B1 × C2

C1 ×A2 C1 ×B2 C1 × C2

in which all rows and columns are coequalisers. Then the lower right square is a pushout;
but if B1 × B2

k→ D coequalises A1 × A2

f1×f2

g1×g2
B1 × B2, then is also coequalises A1 ×

B2 B1 × B2 and B1 × A2 B1 × B2, so if factors through the top and left edges of
the lower right square, and hence through B1 ×B2

h1×h2→ C1 × C2.
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Example 5.14.

(a) The forgetful functor Gp→ Set is monadic, and satisfies the hypotheses of Theorem 5.12. If
G

f

g H is a reflexive pair in Gp, with coequaliser H h→ K in Set, then G×G H×H →
K × K is a coequaliser, so the multiplication H × H → H induces a binary operation
K ×K → K, which is the unique group multiplication on K making h a homomorphism,
and it makes h into a coequaliser in Gp.
The same argument works for AbGp, Rng, Lat, DLat, ….
It doesn’t work for categories like CSLat or CLat, but here we can use Theorem 5.11
provided the forgetful functor has a left adjoint.

(b) Any reflection is monadic: this can be proved using Theorem 5.11. If D ⊆ C is a reflective
subcategory, and A

f

g B is a pair in D for which there exists

A B C
f

g

h

t
s

in C satisfying the equaitions of Definition 5.10(b), then t ∈ morD since D is full, so ft = sh
is in D, but D is closed under splittings of idempotents by Example 4.7(d), so h belongs to
it.

(c) Consider the composite adjunction

Set AbGp tfAbGp
F L

G I

where (L a I) is the adjunction of Example 3.11(b). The two factors are monadic, but the
composite isn’t since free abelian groups are torsion free, so GILF ' GF and its category
of algebras is ∼= AbGp.

(d) The contravariant power-set functor P ∗ : Setop → Set is monadic, and satisfies the hy-
potheses of Theorem 5.12. Its left adjoint is P ∗ : Set → Setop by Example 3.2(i), and it
reflects isomorphisms by Example 2.9(a).

Let E
e→ A

f

g B be a coreflexive equaliser diagram in Set. Then

E A

A B

e

e f

g

is a pullback by Remark 5.13(c), so

PE PA

PA PB

Pe

P∗e

Pf

P∗g
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commutes. But we also have (P ∗e)(Pe) = 1PE and (P ∗f)(Pf) = 1PB since e and f are
injective, so

PA P ∗B PE
P∗g

P∗f

P∗e

Pf

Pe

is a split coequaliser diagram.

(e) The fogetful functor Top
U→ Set is not monadic; the monad on Set induced by (D a U) is

(1Set, 11Set
, 11Set

) so its category of algebras is ∼= Set.

(f) The composite adjunction

Set Top KHaus
D B

U I

is monadic. We’ll prove this using Theorem 5.11: suppose given X
f

g Y in KHaus and
a split coequaliser

UX UY Z
Uf

Ug

h

t

s

in Set. The quotient topology on Z is the unique topology making h into a coequaliser in
Top, and it’s compact, so h will be a coequaliser in KHaus provided Z is Hausdorff. It is
also the unique topology that could make h into a morphism of KHaus.
But, given an equivalence relation S on a compact Hausdorff space Y , Y/S is Hausdorff if
and only if S is closed in Y × Y .
In our case, if (y1, y2) ∈ S (i.e. h(y1) = h(y2)) then x1 = t(y1) and x = t(y2) satisfy
g(t1) = y1, g(x2) = y2 and f(x1) = f(x2).
Conversely, if we have x1 and x2 as above, then h(y1) = h(y2), so S = g × g(R) where
R ⊆ X ×X is {(x1, x2) | f(x1) = f(x2)}. But R is closed in X ×X since it’s the equaliser
of X ×X

fπ1

fπ2
Y . So R is compact, so S is compact, so S is closed in Y × Y .

Definition 5.15 (Monadic tower). Let C F

G
D be an adjunction where D has reflexive co-
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equalisers. The monadic tower of (F a G) is the diagram

...

(CT)S

D CT

C

G

K

L

F

where T is the monad induced by (F a G), and K and L are as in Theorem 5.7 and Lemma 5.9,
and S is the monad induced by (L a K) and so on.
We say (F a G) has monadic length n if we reach an equivalence after n steps.

Lecture 18
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6 Filtered Colimits

Definition 6.1 (Filtered). We say a category C is filtered if every finite diagram D : J → C
has a cone under it.

Lemma 6.2. C is filtered if and only if:

(i) C is nonempty.

(ii) Given A,B ∈ ob C, there exists a cospan A→ C ← B.

(iii) Given A
f

g B in C, there exists B
h→ C with hf = hg.

Proof.

⇒ Since each of (i) - (iii) is a special case of Definition 6.1.

⇐ (i) deals with the empty diagram.
Given D : J → C with J finite and non-empty, by repeated use of (ii) we can find A with morphisms
D(j)→ A for all j. Then by repeated use of (ii) we can find A→ B coequalising

D(j′)

D(j) A

D(α)

for each α ∈ mor J .

For preorders, we say directed instead of filtered.

Definition 6.3 (Has filtered colimits). We say C has filtered colimits if every D : J → C, where
J is small and filtered, has a colimit.

Note that direct limits as in Example 4.3(g) are directed colimits.

Lemma 6.4. Assuming that:

• C has finite colimits

• C has directed colimits

Then C has all small colimits.
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Proof. By Proposition 4.4(i), enough to show C has all small coproducts.

Given a set-indexeud family (Aj | j ∈ J) of objects, the finite coproducts
∑

j∈F Aj , for F ⊆ J finite,
form the vertices of a diagram of shape PfJ = {F ⊆ J | Ffinite} whose edges are coprojections. PfJ
is directed, and a colimit for this diagram has the universal property of a coproduct

∑
j∈J Aj .

Suppose given a D : I × J → C, where C has limits of shape I and colimits of shape J .

L(j) L(j′) colimJ L

limI M

D(i, j) D(i, j′) M(i)

D(i′, j) D(i′, j′) M(i′)

L(β)

D(i,β)

D(α,j) D(α,j′) M(α)

D(i′,β)

We can form L(j) = limI(D(•, j) : I → C), by Example 4.7(e) these are the vertices of a diagram
L : J → C, and we can form colimJ L.

Similarly, the colimits M(i) = colimJ D(i, •) form a diagram of shape I, and we can form limI M . We
get an induced morphism colimJ L→ limI M ; if this is an isomorphism for all D : I × J → C, we say
colimits of shape J commute with limits of shape I in C.

Equivalently, colimJ : [J, C] → C preserves limits of shape I, or limI : [I, C] → C preserves colimits of
shape J .

In Remark 5.13(d) we saw that reflexive coequalisers commute with finite products in Set.

Theorem 6.5. Assuming that:

• J a small category

Then colimits of shape J commute with all finite limits in Set if and only if J is filtered.

Proof.

⇒ Let D : I → J be a diagram with I finite. We have a diagram E : Iop × J → Set defined by
E(i, j) = J(D(i), j).
For each i, (colimJ E)(i) is a singleton since every D(i)→ j is identified with 1D(i) in the colimit,
so limI colimJ E is a singleton.
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But elements of limI E(•, j) are cones under D with apex j, so if colimJ limI E is nonempty there
must be such a cone for some j.

⇐ Suppose given D : I × J → Set where I is finite and J is filtered. In general, the colimitof
E : J → Set is the quotient of

∐
j∈ob J E(j) by the smallest equivalence relation identifying

x ∈ E(j) with D(α)(x) ∈ E(j′) for all α : j → j′ in J . For filtered J , this identifies x ∈ E(j) with
x′ ∈ E(j′) if and only if there exists j α→ j′′

α′

← j′ with E(α)(x) = E(α′)(x′), and moreover if j = j′

we may assume α = α′.
Now, given an element x of limI colimJ D, we can write it as (xi | i ∈ ob I) where xi ∈ colimJ D(i, •)
is an equivalence class of elements xij ∈ D(i, j). If α : i → i′ in I, then D(α, j)(xij) and xi′j′

represent the same element of colimJ D(i′, •) so by repeated use of Lemma 6.2(ii) we can choose rep-
resentatives in D(i, j0) for some fixed j0, and by repeated use of Lemma 6.2(iii) we can assume that
these representatives define an element of limI D(•, j0). This defines an element of colimJ limI D
mapping to the given element of limI colimJ D.
The proof of injectivity is similar: if two elements x, y of colimJ limI D have the same image in
limI colimJ D we can choose representatives xj , yj in limI D(•, j) and then find j → j′ so that each
of the components xij and yij map to the same element of D(i, j′) under j → j′. So x = y in
colimJ limI D.

Lecture 19

Corollary 6.6. For a category C of finitary algebras as in Example 5.14(a),

(i) The forgetful functor U : C → Set creates filtered colimits.

(ii) Filtered colimits commute with finite limits in C.

Proof.

(i) This is just like Example 5.14(a): Given a filtered diagram D : J → C and a colimit for UD with
apex L, then Ln is the colimit of UDn for all n, so each n-ary operation on the D(j)’s induces an
n-ary operation on L, and L also inherits all the equations defining C, so there’s a unique lifting
of the colimit cone under UD to a colimit cone for D.

(ii) Follows from (i) and Theorem 6.5, since U also creates finite limits (and reflects isomorphisms).

Similar results hold for categories such as Cat.

Example 6.7. Consider the diagram

· · · N N N

· · · 1 1 1

s s s

1 1 1
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of shape Nop×2 in Set. The inverse limit of the top row is ∅, but that of the bottom row is 1.
So limNop [Nop,Set] → Set doesn’t preserve epimorphisms; equivalently colimN : [N,Setop] →
Setop doesn’t preserve monomorphisms. Thus by Remark 4.8, directed colimits don’t commute
with pullbacks in Setop.

Given a functor F : C → Set, the category of elements of F is (1 ↓ F ): its objects are pairs (A, x) with
x ∈ FA and morphisms (A, x)→ (B, y) are morphisms f : A→ B such that (Ff)(x) = y.

Proposition 6.8. Assuming that:

• C a small category

• C has finite limits

• F : C → Set a functor

Then the following are equivalent:

(i) F preserves finite limits.

(ii) (1 ↓ F ) is cofiltered.

(iii) F is expresible as a filtered colimit of representable functors.

Proof.

(i) ⇒ (ii) By Lemma 4.10, (1 ↓ F ) has finite limits so (1 ↓ F )op is filtered.

(ii) ⇒ (iii) Consider the diagram (1 ↓ F )op
U→ Cop Y→ [C,Set] where U is the forgetful func-

tor and Y is the Yoneda embedding. A cone under this diagram (with apex G,
say) yields a family of morphisms C(A, •)

λ(A,x)→ G for each x ∈ FA, subject
to compatibility conditions which say that (Gf)Φ(λ(A,x)) = Φ(λ(B,y)) for every
f : (A, x) → (B, y) in (1 ↓ F ), i.e. such that x 7→ Φ(λ(A,x)) is a natural transfor-

mation F → G. So the cone (C(A, •) Ψ(x)→ F | (A, x) ∈ ob(1 ↓ F )) has the universal
property of a colimit for the diagram.

(iii) ⇒ (i) Functors of the form C(A, •) preserve any limits which exist, so this follows from
Theorem 6.5 plus the fact that colimits in [C,Set] are computed pointwise.

Given a category C with filtered colimits, we say F : C → D is finitary if it preserves filtered colimits.
If C = Set, then a finitary F is determined by its restriction to Setf , since any set is the directed
union of its finite subsets.

In fact the restriction functor [Set,D]→ [Setf ,D] has a left adjoint (the left Kan extension functor)
and the finitary functors are those in the image of this left adjoint (up to isomorphism).
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For a category C as in Example 5.14(a) or Corollary 6.6, the corresponding monad T on Set is finitary.
From now on, Setf will denote the skeleton of the category of finite sets whose objects are the sets
[n] = {1, 2, . . . , n}.

Definition 6.9 (Lawvere theory). By a Lawvere theory, we mean a small category T together
with a functor Setf → T which is bijective on objects and preserves finite coproducts. A
model of a Lawvere theory T in any category C with finite products is a functor M : T op → C
preserving finite products.

For example, if T is a monad on Set, the full subcategory of SetT whose objects are the sets [n] is a
Lawvere theory.

Lemma 6.10. Assuming that:

• T a Lawvere theory

Then the category of T -models in Set is (equivalent to) a finitary algebra category in the sense
of Example 5.14(a).

Proof. Given a model M : T op → Set, we have M [n] ∼= M [1]n for all n. Also, any morphism
M [1]n → M [1]p induced by a morphism [p] → [n] in T is determined by its composites with the
projections M [1]p → M [1], so specifying M on morphisms is determined by its effect on morphisms
with domain [1].

So, given a set A, specifying a model M with M [1] = A is equivalent to specifying operations αA :
An → A for each α : [1] → [n] in T , subject to (vi)A(a1, . . . , an) = ai whenever vi : [1] → [n] is the
i-th coprojection, and

Ap An

A

((β1)A,...,(βn)A)

γA αA

commutes whenever
[1] [n]

[p]

α

σ
(β1,...,βn)

commutes.

Lecture 20
Note that the characterisation of T -models in any category with finite products. Note also that the
equations of Lemma 6.10 allow us to reduce any compound operation α(β1(x · · · ), β2(x · · · ), . . . , βn(x · · · ))
to a single operation γ.
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Theorem 6.11. Assuming that:

• C a category

Then the following are equivalent:

(i) C is equivalent to a finitry algebraic category in the sense of Definition 5.15(a).

(ii) C is equivalent to the category of Set-models of a Lawvere theory.

(iii) C ' SetT for a finitary monad T on Set.

Proof.

(ii) ⇒ (i) Let T be the full subcategory of C on the free algebras F [n], for n ∈ N. Then T
is a Lawvere theory, and for every object A of C, the functor C(•, A) restricted to T
preserves finite products, so it’s a model of T . This defines a functor T −Mod(Set)

Y←
SetT; but T −Mod(Set) ' SetT

′ for some finitary monad T′ on Set, so we get a
functor SetT

Y→ SetT
′ which is the identity on underlying sets.

In this situation, Y is induced by a morphism of monads T′ → T, i.e. a natural
transformation θ : T ′ → T commuting with the units and multiplications. (Clearly,
such a θ induces a functor SetT → SetT

′ sending (A,α) to (A,αθA)).
But we know θ[n] is bijective for all n, since elements of the free algebras on [n] are
just morphisms [1]→ [n] in T . But both functors are finitary, so θA is bijective for all
A, i.e. it’s an isomorphism of monads.

For a general monad T on Set, this construction produces a finitary monad T′ which is the coreflection
of T in the category of finitary monads.

For example:

• For T = (double power-set), we obtain T′ = {Boolean algebras}.

• For T = Stone-Čech, we obtain the trivial monad (1Set, 11Set
, 11Set

).
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7 Regular Categories

Definition 7.1 (Image, cover). We say a category C has images if, for every A
f→ B in C,

there exists a least m : B′ � B in Sub(B) through which f factors. We call m the image of f ,
and we say f is a cover if its image is 1B .
We write A

f
_ B to indicate that f is a cover.

Lemma 7.2. Any strong epimorphism is a cover. The converse holds if C has equalisers and
pullbacks.

Proof. If f is strong epic, applying the definition to commutative squares of the form

A B′

B B

g

f m

1B

shows that f is a cover.

For the converse, a cover A
f→ B is epic since it can’t factor through the equaliser of any B

g

h
C

with g 6= h. To verify the other condition, suppose given

A C

B D

g

f m

h

then the pullback of m along h is monic by Lemma 4.15, and f factors through it, so it’s an isomorphism.
So we get B → C by composing with the top edge of the pullback square.

Here, if C has images, image facorisation defines a functor [2, C]→ [3, C]: given

A B

C D

f

g h

k

if we form the image factorisations

A I B

C J D

we get a unique I → J making both squares commute.
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Definition 7.3 (Regular category). We say C is regular if it has finite limits and images, and
image factorisations are stable under pullback, i.e. if the left hand square above is a pullback
then so are both right hand squares. (This is equivalent to saying that covers are stable under
pullback).

Example 7.4.

(a) Set is regular and coregular: all monomorphisms and epimorphisms are strong, and so
the two factorisations coincide and epimorphisms (respectively monomorphisms) are stable
under pullback (respectively pushout).

(b) If C is regular, so is any [D, C] with images constructed pointwise (they’re stable under
pushout since pullbacks are also constructed pointwise).

(c) If C is regular, then so CT for any monad T whose underlying functor T preserves covers. If
f : (A,α)→ (B, β) is a morphism of CT and A _ I � B is the image factorisation of f in
C, then in

TA TI TB

A I B

α ι β

we get a unique ι making both squares commute, making (I, ι) into a T-algebra, and it’s
the image of f in CT.
In particular, any category monadic over Set is regular.Lecture 21

(d) If C is a preorder, every morphism is its own image, and covers are isomorphisms. So C is
regular if and only if it has finite meets.

(e) Top has images and coimages: given X
f→ Y , its image (respectively coimage) is its set-

theoretic image topologised as a quotient of X (respectively subspace of Y ). Top isn’t
regular, but it is coregular.

Proposition 7.5. Assuming that:

• C a regular

Then covers coincide with regular epimorphisms.

Proof.

⇐ Regular epimorphism implies strong epimorphism by Exercise 21̇4.
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⇒ Suppose A
f
_ B is a cover; let R

a

b
A be its kernel-pair, i.e. the pullback of

A

A B

f

f

Suppose given g : A → C with ga = gb; form the image A
e
_

(h,k)
� B × C of A (f,g)→ B × C. We’ll

show h is an isomorphism, so that kh−1 is a factorisation of g through f . h is a cover since he = f
is, so we need to prove h is monic.

Let D
l

m I such that hl = hm; form the pullback

P D

A×A I × I

p

(q,r) (e,m)

e×e

e× e factors as A×A
1×e
_ A× I

e×1
_ I × I, so e× e is a cover, and p is a cover.

Now fq = heq = hlp = hmp = her = fr so (q, r) factors through (a, b). But (h, k)ea = (f, g)a =
(f, g)b = (h, k)eb and (h, k) is monic, so ea = eb, so eq = er, i.e. lp = mp. Also p is epic, so l = m.

By a relation A # B in a category C with finite products, we mean an isomorphism class of subobjects
R � A×B.

If C has images, we define the composite of A
R
# B

S
# C by forming the pullback

P S C

R B

A

q

p

d

c

b

a

forming the image of (ap, dq) : P → A× C.

This is well-defined up to isomorphism and has the A
(1A,1A)
� A×A as 2-sided identities.

Lemma 7.6. Composition of relations in C is associative if and only if C is regular.

Proof.
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⇒ Suppose given A
f→ B

e
^ C. Consider the relations

A C C

A B C 1
1A

f

e
1A

1A

!C

Composing the right hand pair first, we get

B

B 1
1B

!B

and thus we get
A

A 1
1A

!A

Composing the left hand pair first, we begin by forming the pullback

P

A C

B

p

q

f

e

and we endup with the image of (p, !P ) : P → A× 1; so p must be a cover.

⇐ Suppose given relations A
R
# B

S
# C

T
# D. If we form the pullbacks

U Q T D

P S C

R B

A

then both T ◦ (S ◦R) and (T ◦ S) ◦R are the image of U → A×D.

We write Rel(C) for the category whose objects are those of C and whose morphisms are relations.
Note that Rel(Set) is just Rel as defined in Example 1.3(e).
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We have a faithful functor C → Rel(C) which is the identity on objects and sends A f→ B to A
(1,f)
� A×B

(for faithfulness, see Exercise 4.22(i)). We write f• for (1A, f).

Note that there’s an isomporphism Rel(C) → Rel(Cop) which is the identity on objects and sends

R
(a,b)
� A×B to R

(b,a)
� B ×A; we denote this by R◦, and write f• for (f•)

◦.

Also, Rel(C) is enriched over Poset (provided Rel(C) is locally small, i.e. C is well-powered), i.e. each
Rel(C)(A,B) has a partial order which is preserved by composition.

We say A
R
# B is left adjoint to B

S
# A if 1A ≤ S ◦R and R ◦ S ≤ 1B .

Proposition 7.7. A
R
# B is a left adjoint in Rel(C) if and only if it is of the form f•.

Proof.

⇐ We show (f• a f•): the composite f•f• is just the kernel-pair R
(a,b)
� A×A of f , and A

(1A,1A)
� A×A

factors through it. Also f•f
• is the image of

A B ×B

B

(f,f)

f

(1B ,1B)

so it contains (1B , 1B).

⇒ Conversely, suppose R
(a,b)
� A× B has a right adjoint R′ (b′,a′)

� B × A. In forming R′ ◦ R, we take
the pullback

P R′

R B

p′

p b′

b

So the image of (ap, a′p′) contains A
(1A,1A)→ A × A, so ap factors as a cover followed by a split

epimorphism, so a is a cover.
Now, in the pullback

Q R′

R A

q

q a′

a

q and q′ are covers, but the image of (bq, b′q) is contained in (1B , 1B) so bq = b′q′. But aq = a′q′,
so R′ = R◦, a = a′, b = b′ and q = q′. So a is monic, and hence an isomorphism, so R = (ba−1).
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Lecture 22
P. Freyd developed a theory of allegories which have the structure of categories of relations and
axiomatised those allegories A for which the subcategory Ala is regular.

In a regular category C, we say a relation R : A # A is reflexive if 1A ≤ R, symmetric if R◦ = R, and
transitive if R ◦ R ≤ R. R is an equivalence relation if it has all three properties. For any A

f→ B in
C, the kernel-pair R

(a,b)→ A × A of f is an equivalence relation. We say an equivalence relation R is
effective if it occurs as a kernel-pair, and C is effective regular if all equivalence relations are effective.

tfAbGp is regular but not effective regular: {(m,n) ∈ Z × Z | m ≡ n (mod 2)} is a non-effective
equivalence relation on Z.

Note that an equivalence relation is idempotent in Rel(C), and if A is an allegory and E is a class of
symmetric idempotents in A then A[Ě ] (as defined in Exercise 1.18) is an allegory; and if A is Rel(C)
for a regular category C, then:

Proposition 7.8. Assuming that:

• C a regular category

• E is the class of equivalence relations in C

Then Ceff = (Rel(C)[Ě ])la is effective regular, and the embedding Rel(C)→ Rel(C)[Ě ] restricts
to a full and faithful regular functor C → Ceff which is universal among regular functors C → D
where D is effective regular.

Note that if C is effective regular, its equivalence relations are split idempotents in Rel(C): if A
R
# A

is the kernel-pair of A
f
_ B then it splits as f•f• (as we saw for C = Set in Exercise 1.19).

Definition 7.9 (Topos). A topos is a regular category E for which the embedding E → Rel(E)
sending f to f• has a right adjoint. We write the effect of the right adjoint on objects by
A 7→ PA, and the unit A→ PA as {}A, and the counit PA # A as ∃A � PA×A.

In Set, PA is the power-set of A, the unit is the mapping a 7→ {a} of Example 1.7(c), and ∃A =
{(A′, a) | a ∈ A′} ⊆ PA×A.

Note that (isomorphism classes of) subobjects of A are in bijection with morphisms 1 → PA. C. J.
Mikkelses showed that any topos has finite colimits; we’ll give Bob Paré’s proof, which is much simpler.

Proposition 7.10. Assuming that:

• E a topos

Then there exists a monadic functor Eop → E . In particular, Eop has finite colimits and if E has
limits of shape J then it also has colimits of shape Jop.
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Proof. We make the assignment A 7→ PA into a functor P : E → E and a functor P ∗ : Eop → E :
given f : A → B, Pf : PA → PB corresponds to the image of ∃A � PA× A

1×f→ PA× B, and P ∗f
corresponds to the pullback of

∃B

PB ×A PB ×B
1×f

Given C
g→ PA corresponding to R � C×A, (Pf)g corresponds to the image of R � C×A 1×f→ C×B

and similarly given S � D×B, composing with P ∗f corresponds to pulling back along D×A 1×f→ D×B.

Given a pullback square
D A

B C

h

k f

g

in E ,
PD PA

PB PC

Pk

P∗h

Pf

P∗g

commutes, since both ways correspond to the image of the left vertical composite in

E ∃A

PA×D PA×A

PA×B PA× C

where both squares are pullbacks.

Now, as in Example 5.14(d), we have that if E e→ A
f

g B is a coreflexive in E , then

PB PA PE
P∗f

P∗g

P∗e

Pg
Pe

is a split coequaliser coequaliser in E . Also, P ∗ is self-adjoint on the right, and it reflects isomorphisms
by Exercise 7.17(v). The second assertion follows from Proposition 5.8(i).

Lecture 23
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Definition 7.11.

(a) By the support of an object A in a regular category, we mean the image of A→ 1. We say
A is well-supported if A→ 1 is a cover.

(b) We say a regular category C is totally supported if every object is well-supported. We say C
is almost totally supported if every object is either well-supported or a strict initial object,
where we cann an object 0 strict if every A→ 0 is an isomorphism. (Given finite limits, a
strict object is initial since for any A there exists 0

π−1

→ 0×A
π2→ A, and the equaliser of any

pair 0 A is a).

(c) We say a regular category C is capital if its terminal object 1 is a detector, i.e. C(1, •)
reflects isomorphisms.

Example. Gp and AbGp are totally-supported since their terminal objects are initial. Set is
almost totally-supported and capital. Note that capital implies almost totally-supported since
if A isn’t well-supported there are no morphisms 1→ A.

A representable functor C(A, •) always preserves limits, so it’s a regular functor if and only if A is
cover-projective (c.f. Definition 2.10).

Lemma 7.12. Assuming that:

• C a locally small capital regular category

Then 1 is cover-projective.

Proof. Since covers are stable under pullback, we need to show that every A _ 1 is split epic. If A ∼= 1,
nothing to prove. If not, the projections A × A A aren’t equal (since their coequaliser is A _ 1,
by Proposition 7.5). So there exists 1 → A × A not factoring through their equaliser, so there exists
1→ A×A→ A.

If C is regular, the full subcategory Cws of well-supported objects is closed under finite products since

A×B A

B 1

is a pullback, and under pullbacks of covers since if A _ B then A and B have the same support.

We write Ctv for the category obtained from Cws by adjoining a strict initial object 0: this is regular
and almost totally-supported and the functor C → Ctv sending all non-well-supported objects to 0 is
regular (c.f. Exercise 5.19).
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Lemma 7.13. Assuming that:

• C a small almost totally-supported regular category

Then there exists an isomorphism-reflecting regular functor I : C → C′, where C′ is also small and
almost totally-supported, such that for every well-supported A ∈ ob C there exists a morphism
1→ IA in C′ not factoring through I(m) for any proper

Proof. Recall from Exercise 7.17: C regular implies C/A regular for any A, and for any f : A→ B in C
pullback along f defines a regular functor f∗ : C/B → C/A, which has a left adjoint Σf : C/A→ C/B
sending g : C → A to fg. And f∗ reflects isomorphisms if and only if f is a cover.

We’ll define C′ as (Ĉ)tv where Ĉ is easier to describe.

To satisfy the desired conclusion for a single well-supported object A, enough to take (!)∗A : C ∼= C/1→
C/A, since (!A)

∗A = (A×A
π2→ A) acquires a point ∆ : (A

1→ A)→ (A×A→ A) not factoring through
(A′ ×A→ A) for any proper A � A.

More generally, for any finite list A1, . . . , An of well-supported objects, we can take C/
∏n

i=1 Ai.

We define a base to be a finite list ~A = (A1, . . . , An) of distinct well-supported objecs of C. We preorder
the set B of bases by ~A ≤ ~B if ~B contains all the members of ~A. We write

∏ ~A for the product
∏n

i=1 Ai

and if ~A ≤ ~B we write π ~B, ~A for the product projection
∏ ~B →

∏ ~A. This makes ~A 7→
∏ ~A into a

functor Bop → C.

Hence the assignment ~A→ C/
∏ ~A, π ~B, ~A 7→ π∗

~B, ~A
is ‘almost’ a functor B → Cat.

We now define Ĉ: its objects are pairs ( ~B, f) where ~B is a base and f : A →
∏ ~B is an object of

C/
∏ ~B. Morphisms ( ~B, f)→ ( ~B′, f ′) are represented by pairs (~C, g) where ~C is a base containing ~B

and ~B′ and g : π∗f → π′∗f ′ in C/
∏ ~C, subject to the relation which identifies (~C, g) with (~C ′, g′) if

~C ≤ ~C′ and the pullback of g to C/
∏ ~C is isomorphic to g′.

Clearly, each C/
∏ ~B sits inside Ĉ as a non-full subcategory; so in particular C ∼= C/

∏
[] is a subcategory

of Ĉ, Ĉ is regular, and the inclusions C/
∏ ~B → Ĉ are isomorphism-reflecting regular functors.

Given a finite diagram in Ĉ, we can choose ~B such that all edges of the diagram appear as morphisms
in C/

∏ ~B, and take the limit there, and this is a limit in Ĉ. Similarly for images.

Also, if a morphism f becomes an isomorphism in Ĉ, its inverse must live C/
∏ ~B for some ~B, hence

f is an isomorphism C/
∏ ~B.

We define C′ = (Ĉ)tv: the induced functor C → Ĉ → C′ is still isomorphism reflecting since C is almost
totally-supported.

Lecture 24
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Lemma 7.14. Assuming that:

• C a small regular and almost totally-supported category

Then there exists an isomorphism reflecting regular functor C → Ĉ where C is capital. Hence in
particular, there is an isomorphism-reflecting regular functor C → Set.

Proof. Consider the sequence
C = C0 → C1 → C2 → · · · ,

where each Cn+1 is obtained from Cn by the construction of Lemma 7.13.

We define Ĉ to be the pseudo-colimit of this sequence: objects are pairs (n,A) where A ∈ ob Cn, and
morphisms (n,A) → (m,B) are represented by pairs (p, f) where p ≥ max{m,n} and F : IA → I ′B
in Cp, modulo the identification of (p, f) with (p′, f ′) if p ≤ p′ and f ′ = If .

The proof that C is regular, and that the embeddings Cn → Ĉ are isomorphism-reflecting regular
functors, is as in Lemma 7.13.

Given any non-invertible monomorphism A′ � A in Ĉ, it lives in Cn for some n, so there exists 1→ A
in Cn+1 not factoring through A′ � A.

But if A f→ B isn’t monic in Ĉ, the legs R
a

b
A of its kernel-pair aren’t equal, so there exists 1

r→ R

not factoring through their equation, so 1
ar

br
A are distinct but have the same composite with f .

So Ĉ(1, •) reflects monomorphisms and hence reflects isomorphisms.

Theorem 7.15. Assuming that:

• C small and regular

Then there exists a set I and an isomorphism-reflecting regular functor C → SetI .

Proof. Let I be a representative set of subobjects of 1 in C, and for each U ∈ I consider the composite

C (!U )∗→ C/U → (C/U)tv → ̂(C/U)tv → Set,

where the third factor is the functor of Lemma 7.14 and the fourth is represented by 1.

Given any non-invertible morphism A
f→ B in C, if U is the support of B then (!)∗Hf remains non-

invertible in C/U and its codomain is well-supported there, so it remains non-invertible in (C/U)tv and
hence in Set.

So these functors collectively reflect isomorphisms.
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Remark 7.16.

(a) Barr’s original embedding theorem produces a full and faithful regular functor C → [D,Set]
for some small category D. Moreover if C is almost totally-supported we can take D to be
a monoid.

(b) Theorem 7.15 yields a ‘meta theorem’ saying that ‘anything we can prove in Set is true in
all regular categories’.

For example to prove Proposition 7.5 (cover implies regular epic), given a cover A
f
_ B in

a regular category C, and a A
g→ C having equal composites with the kernel-pair R A

of f , we can cut down to a small subcategory C′ containing f and g and closed under finite

limits and images, and then show that the first component of I
(h,k)
� A × C becomes an

isomorphism in SetI .

(c) Abelian categories are regular categories enriched over AbGp (i.e. for any two objects A
and B, A(A,B) has an abelian group structure and composition distributes over addition).
Abelian categories are totally-supported since their terminal objects are initial, so for any
small abelian A we get an isomorphism-reflecting regular functor A → Set and hence an
isomorphism-reflecting functor A ∼= AbGp(A)→ AbGp(Set) = AbGp.
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