%! TEX root = AG2.tex % vim: tw=50 % 14/10/2024 10AM In other words: the $k$-algebra homomorphisms $A(X) \to L$ correspond to $L$-valued points, i.e. points with coordinates in $L$. Could work over $\Zbb$. Take an ideal $I \subseteq \Zbb[x_1, \ldots, x_n]$, and set \[ A = \Zbb[x_1, \ldots, x_n] / I .\] Ring homomorphisms $A \to \Zbb$ are $1-1$ correspondence with $(a_1, \ldots, a_n) \in \Zbb^n$ such that $f(a_1, \ldots, a_n) = 0 ~\forall f \in I$. Maps $A \to \Fbb_p$ give ``solutions'' $\bmod p$, or maps $A \to \Qbb$ give rational solutions. \textbf{What we want:} Given an extension of $A$,e we want to define a gadget $X = \mathrm{Spec} A$ (spectrum of $A$), and an $R$-valued point of $X$ is a ring homomorphism $A \to R$. We write the set of $R$-valued points as \[ X(R) \defeq \Hom_{\text{Ring}}(A, R) .\] Morphisms $\mathrm{Spec} B \to \mathrm{Spec} A$ should be the same as ring homomorphisms $A \to B$. \begin{definition*}[Category of affine schemes] % Definition 0 The category of affine schemes is the opposite category of rings. \end{definition*} \textbf{Reminder:} All of our rings have $1$ and are commutative, and ring homomorphisms $\varphi : A \to B$ satisfy $\varphi(1) = 1$. \begin{definition*} % Definition 1 A \emph{scheme} is a geometric object which is locally an affine scheme. \end{definition*} \textbf{Analogy:} A manifold is something which locally looks like an open subset of $\Rbb^n$. \begin{fcdefn}[Spectrum] \glssymboldefn{Spec}% Let $A$ be a ring. Then \[ \mathrm{Spec} = \{p \subseteq A \st \text{$P$ a prime ideal}\} .\] \end{fcdefn} \textbf{Note:} In general, if we have an $L$-valued point of $X = Z(I) \subseteq \Abb^n$, we get a ring homomorphism $\varphi : A(X) \to L$ has image an integral subdomain of $L$, so $\ker \varphi$ is prime. \begin{fcdefn}[$V(I)$] \glssymboldefn{V}% For $I \subseteq A$ an ideal, define \[ V(I) = \{ P \in \Spec A \st P \supseteq I\} .\] \end{fcdefn} \begin{proposition*} The sets $\V(I)$ form the closed sets of a topology on $\Spec A$, called the \emph{Zariski topology}. \end{proposition*} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item $\V(A) = \emptyset$ \item $\V(0) = \Spec A$ \item If $\{I_j\}_{j \in J}$ is a collection of ideals, then \[ \bigcap_{j \in J} \V(I_j) = \V \left( \sum_{r\in J} I_j \right) .\] (easy!) \item $\V(I_1) \cup \V(I_2) = \V(I_1 \cap I_2)$: \begin{enumerate}[$\subseteq$] \item[$\subseteq$] If $P \supseteq I_1$ or $P \supseteq I_2$, then $P \supseteq I_1 \cap I_2$. \item[$\supseteq$] If $P \supseteq I_1 \cap I_2$, then $P \supseteq I_1$ or $P \supseteq I_2$. \end{enumerate} See Atiyah + MacDonald, Prop 1.11 ii) [Try to prove it for yourself!] \qedhere \end{enumerate} \end{proof} \begin{example*} $A = k[x_1, \ldots, x_n]$ with $k$ algebraically closed. For $I \subseteq A$, the maximal ideals of $A$ corresponding to points of $Z(I)$ are precisely the maximal ideals containing $I$. \end{example*} \newpage \section{Sheaves} Fix a topological space $X$. \begin{fcdefn}[Presheaf] \glsnoundefn{pres}{presheaf}{presheaves} A \emph{preasheaf} $\mathcal{F}$ on $X$ consists of data: \begin{enumerate}[(1)] \item For every open set $U \subseteq X$, an abelian group $\mathcal{F}(U)$. \item Whenever $V \subseteq U \subseteq X$ open, there is a restriction homomorphism $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ such that $\rho_{UU} = \id_{F(U)}$ and if $W \subseteq V \subseteq U \subseteq X$, then $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$. \end{enumerate} \end{fcdefn} \begin{remark*} This is precisely a contravariant functor from the category of open sets [i.e. objects are open sets $U \subseteq X$, morphisms are inclusions $V \subseteq U$] to the category of abelian groups. Can replace the category of abelian groups with your favourite category. \end{remark*} \begin{fcdefn}[Morphism of presheaves] If $\mathcal{F}, \mathcal{M}$ are \glspl{pres} on $X$, then a \emph{morphism} of \glspl{pres} $f : \mathcal{F} \to \mathcal{M}$ is data of, for each $U \subseteq X$ open, a group homomorphism $f_U : \mathcal{F}(U) \to \mathcal{M}(U)$ such that whenever $V \subseteq U$, we have a commutative diagram \[ \begin{tikzcd} s \ar[d, mapsto] & \mathcal{F}(U) \ar[r, "f_U"] \ar[d, "\rho_{UV}^{\mathcal{F}}"] & \mathcal{M}(U) \ar[d, "\rho_{UV}^{\mathcal{M}}"] \\ s|_V & \mathcal{F}(V) \ar[r, "f_V"] & \mathcal{M}(V) \end{tikzcd} .\] \end{fcdefn} \begin{example*} $\mathcal{F}(U) = \{f : U \to \Rbb \text{ continuous}\}$. $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ is restriction of functions. \end{example*} \begin{fcdefn}[Sheaf] \glsnoundefn{sheaf}{sheaf}{sheaves} A \gls{pres} $\mathcal{F}$ on $X$ is a sheaf if it satisfies: \begin{enumerate}[(1)] \item If $U \subseteq X$ is covered by $\{U_i\}$ ($U, U_i \subseteq X$ open) and $s \in \mathcal{F}(U)$ such that $s|_{U_i} = \rho_{UU_i}(s) = 0$, then $s = 0$. \item If $U, \{U_i\}$ are as is (1), and $s_i \in \mathcal{F}(U_i)$ for each $i$ such that $s_i|_{U_i \cap U_j} = s_j |_{U_i \cap U_j}$ for all $i, j$, then there exists $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all $i$ (gluing axiom). \end{enumerate} \end{fcdefn}